Backgrounds GSTM1 and GSTT1 are involved in the detoxification of carcinogens such as smoking by-products, and polymorphisms in these two genes with a result of loss of enzyme activity may increase risk of carcinogenesis. Although many epidemiological studies have investigated the association between GSTM1 or GSTT1 null genotype and head and neck squamous cell carcinoma (HNSCC), the results remain conflicting. To elucidate the overall association of GSTM1, GSTT1 and HNSCC, we included all available studies and performed this meta-analysis. Methodology/Principal Findings A dataset including 42 articles for GSTM1, 32 articles for GSTT1, and 15 articles for GSTM1 and GSTT1 in combination were identified by a search in PubMed. Associations beween HNSCC and polymorphisms of GSTM1 and GSTT1 alone and in combination were analysed by software RevMan 5.1. Stratification analysis on ethnicity and smoking status, sensitivity analysis, heterogeneity among studies and their publication bias were also tested. Association was found in overall analysis between HNSCC and GSTM1 and GSTT1 null genotype. Stratified by ethnicity, we found increased risks of HNSCC in carriers with GSTM1 null genotype in Asian, GSTT1 null genotype in South American, and dual null genotype in European and Asian. When stratified by smoking, a more significant association of GSTM1 null genotype with HNSCC risk was observed in smokers. Conclusions/Significance This meta-analysis presented additional evidence of the association between GSTM1 and GSTT1 polymorphisms and HNSCC risk.
References
[1]
Walker DM, Boey G, McDonald LA (2003) The pathology of oral cancer. Pathology 35: 376–383.
[2]
Casiglia J, Woo SB (2001) A comprehensive review of oral cancer. Gen Dent 49: 72–82.
[3]
Reichart PA (2001) Identification of risk groups for oral precancer and cancer preventive measures. Clin Oral Investig 5: 207–213.
[4]
Hashibe M, Brennan P, Strange RC, Bhisey R, Cascorbi I, et al. (2003) Meta- and Pooled Analyses of GSTM1, GSTT1, GSTP1, and CYP1A1 Genotypes and Risk of Head and Neck Cancer. Cancer Epidemiol Biomarkers Prev 12: 1509–1517.
[5]
Ruwali M, Singh M, Pant MC, Parmar D (2011) Polymorphism in glutathione S-transferases: susceptibility and treatment outcome for head and neck cancer. Xenobiotica 41: 1122–1130.
[6]
Louren?o GJ, Silva EF, Rinck-Junior JA, Chone CT, Lima CS (2011) CYP1A1, GSTM1 and GSTT1 polymorphisms, tobacco and alcohol status and risk of head and neck squamous cell carcinoma. Tumor Biol 32: 1209–1215.
[7]
Singh M, Shah PP, Singh AP, Ruwali M, Mathur N, et al. (2008) Association of genetic polymorphisms in glutathione S-transferases and susceptibility to head and neck cancer. Mutat Res 638: 184–194.
[8]
Suzen HS, Guvenc G, Turanli M, Comert E, Duydu Y, et al. (2007) The role of GSTM1 and GSTT1 polymorphisms in head and neck cancer risk. Oncol Res 16: 423–429.
[9]
Boccia S, Cadoni G, Sayed-Tabatabaei FA, Volante M, Arzani D, et al. (2008) CYP1A1, CYP2E1, GSTM1, GSTT1, EPHX1 exons 3 and 4, and NAT2 polymorphisms, smoking, consumption of alcohol and fruit and vegetables and risk of head and neck cancer. J Cancer Res Clin Oncol 134: 93–100.
[10]
Biselli JM, de Angelo Calsaverini Leal RC, Ruiz MT, Goloni-Bertollo EM, Maníglia JV, et al. (2006) GSTT1 and GSTM1 polymorphism in cigarette smokers with head and neck squamous cell carcinoma. Braz J Otorhinolaryngol 72: 654–658.
[11]
Zintzaras E, Ioannidis JP (2005) HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics 21: 3672–3673.
[12]
Trizna Z, Clayman GL, Spitz MR, Briggs KL, Goepfert H (1995) Glutathione s-transferase genotypes as risk factors for head and neck cancer. Am J Surg 170: 499–501.
[13]
Oude Ophuis MB, van Lieshout EM, Roelofs HM, Peters WH, Manni JJ (1998) Glutathione S-transferase M1 and T1 and cytochrome P4501A1 polymorphisms in relation to the risk for benign and malignant head and neck lesions. Cancer 82: 936–943.
[14]
McWilliams JE, Evans AJ, Beer TM, Andersen PE, Cohen JI, et al. (2000) Genetic polymorphisms in head and neck cancer risk. Head Neck 22: 609–617.
[15]
Ko Y, Abel J, Harth V, Br?de P, Antony C, et al. (2001) Association of CYP1B1 codon 432 mutant allele in head and neck squamous cell cancer is reflected by somatic mutations of p53 in tumor tissue. Cancer Res 61: 4398–4404.
[16]
Gaudet MM, Olshan AF, Poole C, Weissler MC, Watson M, et al. (2004) Diet, GSTM1 and GSTT1 and head and neck cancer. Carcinogenesis 25: 735–740.
[17]
Capoluongo E, Almadori G, Concolino P, Bussu F, Santonocito C, et al. (2007) GSTT1 and GSTM1 allelic polymorphisms in head and neck cancer patients from Italian Lazio Region. Clin Chim Acta 376: 174–178.
[18]
Ruwali M, Khan AJ, Shah PP, Singh AP, Pant MC, et al. (2009) Cytochrome P450 2E1 and head and neck cancer: interaction with genetic and environmental risk factors. Environ Mol Mutagen 50: 473–482.
[19]
Singh AP, Shah PP, Ruwali M, Mathur N, Pant MC, et al. (2009) Polymorphism in cytochrome P4501A1 is significantly associated with head and neck cancer risk. Cancer Invest 27: 869–876.
[20]
Gronau S, Koenig-Greger D, Jerg M, Riechelmann H (2003) GSTM1 enzyme concentration and enzyme activity in correlation to the genotype of detoxification enzymes in squamous cell carcinoma of the oral cavity. Oral Dis 9: 62–67.
[21]
Jahnke V, Strange R, Matthias C, Fryer A (1997) Glutathione S-transferase and cytochrome P450 genotypes as risk factors for laryngeal carcinoma. Eur Arch Otorhinolaryngol 254 Suppl 1: S147–149.
[22]
Olivieri EH, da Silva SD, Mendon?a FF, Urata YN, Vidal DO, et al. (2009) CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients. Oral Oncol 45: e73–79.
[23]
Jahnke V, Matthias C, Fryer A, Strange R (1996) Glutathione S-transferase and cytochrome-P-450 polymorphism as risk factors for squamous cell carcinoma of the larynx. Am J Surg 172: 671–673.
[24]
Park JY, Muscat JE, Ren Q, Schantz SP, Harwick RD, et al. (2009) CYP1A1 and GSTM1 polymorphisms and oral cancer risk. Cancer Epidemiol Biomarkers Prev 6: 791–797.
[25]
González MV, Alvarez V, Pello MF, Menéndez MJ, Suárez C, et al. (1998) Genetic polymorphism of N-acetyltransferase-2, glutathione S-transferase-M1, and cytochromes P450IIE1 and P450IID6 in the susceptibility to head and neck cancer. J Clin Pathol 51: 294–298.
[26]
Cheng L, Sturgis EM, Eicher SA, Char D, Spitz MR, et al. (1999) Glutathione-S-transferase polymorphisms and risk of squamous-cell carcinoma of the head and neck. Int J Cancer 84: 220–224.
[27]
Katoh T, Kaneko S, Kohshi K, Munaka M, Kitagawa K, et al. (1999) Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and oral cavity cancer. Int J Cancer 83: 606–609.
[28]
Morita S, Yano M, Tsujinaka T, Akiyama Y, Taniguchi M, et al. (1999) Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to head-and-neck squamous-cell carcinoma. Int J Cancer 80: 685–688.
[29]
Nazar-Stewart V, Vaughan TL, Burt RD, Chen C, Berwick M, et al. (1998) Glutathione S-transferase M1 and susceptibility to nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 8: 547–551.
[30]
Sato M, Sato T, Izumo T, Amagasa T (1999) Genetic polymorphism of drug-metabolizing enzymes and susceptibility to oral cancer. Carcinogenesis 20: 1927–1931.
[31]
Tanimoto K, Hayashi S, Yoshiga K, Ichikawa T (1999) Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol 35: 191–196.
[32]
Hamel N, Karimi S, Hébert-Blouin MN, Brunet JS, Gilfix B, et al. (2000) Increased risk of head and neck cancer in association with GSTT1 nullizygosity for individuals with low exposure to tobacco. Int J Cancer 87: 452–454.
[33]
Olshan AF, Weissler MC, Watson MA, Bell DA (2000) GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomarkers Prev 9: 185–191.
[34]
Hahn M, Hagedorn G, Kuhlisch E, Schackert HK, Eckelt U (2002) Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to oral cavity cancer. Oral Oncol 38: 486–490.
[35]
To-Figueras J, Gené M, Gómez-Catalán J, Piqué E, Borrego N, et al. (2002) Microsomal epoxide hydrolase and glutathione S-transferase polymorphisms in relation to laryngeal carcinoma risk. Cancer Lett 187: 95–101.
[36]
Gronau S, Koenig-Greger D, Jerg M, Riechelmann H (2003) Gene polymorphisms in detoxification enzymes as susceptibility factor for head and neck cancer? Otolaryngol Head Neck Surg 128: 674–680.
[37]
Drummond SN, De Marco L, Noronha JC, Gomez RS (2004) GSTM1 polymorphism and oral squamous cell carcinoma. Oral Oncol 40: 52–55.
[38]
Evans AJ, Henner WD, Eilers KM, Montalto MA, Wersinger EM, et al. (2004) Polymorphisms of GSTT1 and related genes in head and neck cancer risk. Head Neck 26: 63–70.
[39]
Li L, Lin P, Deng YF, Zhu ZL, Lu HH (2004) Relationship between susceptibility and prognosis of laryngeal cancer and genetic polymorphisms in CYP1A1 and GSTM1. Zhonghua Er Bi Yan Hou Ke Za Zhi 39: 2–7.
[40]
Drummond SN, Gomez RS, Motta Noronha JC, Pordeus IA, Barbosa AA, et al. (2005) Association between GSTT-1 gene deletion and the susceptibility to oral squamous cell carcinoma in cigarette-smoking subjects. Oral Oncol 41: 515–519.
[41]
Gajecka M, Rydzanicz M, Jaskula-Sztul R, Kujawski M, Szyfter W, et al. (2005) CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutat Res 574: 112–123.
[42]
Acar H, Ozturk K, Muslumanoglu MH, Yildirim MS, Cora T, et al. (2006) Relation of glutathione S-transferase genotypes (GSTM1 and GSTT1) to laryngeal squamous cell carcinoma risk. Cancer Genet Cytogenet. 2006 169: 89–93.
[43]
Gattás GJ, de Carvalho MB, Siraque MS, Curioni OA, Kohler P, et al. (2006) Genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 associated with head and neck cancer. Head Neck 28: 819–826.
[44]
Oude Ophuis MB, Manni JJ, Peters WH (2006) Glutathione S-transferase T1 null polymorphism and the risk for head and neck cancer. Acta Otolaryngol 126: 311–317.
[45]
Peters ES, McClean MD, Marsit CJ, Luckett B, Kelsey KT (2006) Glutathione S-transferase polymorphisms and the synergy of alcohol and tobacco in oral, pharyngeal, and laryngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15: 2196–2202.
[46]
Sharma A, Mishra A, Das BC, Sardana S, Sharma JK (2006) Genetic polymorphism at GSTM1 and GSTT1 gene loci and susceptibility to oral cancer. Neoplasma 53: 309–315.
[47]
Sugimura T, Kumimoto H, Tohnai I, Fukui T, Matsuo K, et al. (2006) Gene-environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms. J Oral Pathol Med 35: 11–18.
[48]
Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimkar MB (2007) Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. Carcinogenesis 28: 1455–1462.
[49]
Cha IH, Park JY, Chung WY, Choi MA, Kim HJ, et al. (2007) Polymorphisms of CYP1A1 and GSTM1 genes and susceptibility to oral cancer. Yonsei Med J 48: 233–239.
[50]
Buch SC, Nazar-Stewart V, Weissfeld JL, Romkes M (2008) Case-control study of oral and oropharyngeal cancer in whites and genetic variation in eight metabolic enzymes. Head Neck 30: 1139–1147.
[51]
Harth V, Schafer M, Abel J, Maintz L, Neuhaus T, et al. (2008) Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J Toxicol Environ Health A 71: 887–897.
[52]
Hatagima A, Costa EC, Marques CF, Koifman RJ, Boffetta P, et al. (2008) Glutathione S-transferase polymorphisms and oral cancer: a case-control study in Rio de Janeiro, Brazil. Oral Oncol 44: 200–207.
[53]
Losi-Guembarovski R, Cólus IM, De Menezes RP, Poliseli F, Chaves VN, et al. (2008) Lack of association among polymorphic xenobiotic-metabolizing enzyme genotypes and the occurrence and progression of oral carcinoma in a Brazilian population. Anticancer Res 28: 1023–1028.
[54]
Amtha R, Ching CS, Zain R, Razak IA, Basuki B, et al. (2009) GSTM1, GSTT1 and CYP1A1 polymorphisms and risk of oral cancer: a case-control study in Jakarta, Indonesia. Asian Pac J Cancer Prev 10: 21–26.
[55]
Li Q, Wang L, Chen Y, Du Y, Kong P, et al. (2009) Polymorphisms of GSTM1, GSTT1 and susceptibility of laryngeal and hypopharyngeal carcinomas. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 23: :1105–7, 1111.
[56]
Chatzimichalis M, Xenellis J, Tzagaroulakis A, Sarof P, Banis K, et al. (2010) GSTT1, GSTM1, GSTM3 and NAT2 polymorphisms in laryngeal squamous cell carcinoma in a Greek population. J Laryngol Otol 124: 318–323.
[57]
Leme CV, Raposo LS, Ruiz MT, Biselli JM, Galbiatti AL, et al. (2010) GSTM1 and GSTT1 genes analysis in head and neck cancer patients. Rev Assoc Med Bras 56: 299–303.
[58]
Sam SS, Thomas V, Reddy KS, Surianarayanan G, Chandrasekaran A (2010) Gene-gene interactions of drug metabolizing enzymes and transporter protein in the risk of upper aerodigestive tract cancers among Indians. Cancer Epidemiol 34: 626–633.
[59]
Soucek P, Susova S, Mohelnikova-Duchonova B, Gromadzinska J, Moraviec-Sztandera A, et al. (2010) Polymorphisms in metabolizing enzymes and the risk of head and neck squamous cell carcinoma in the Slavic population of the central Europe. Neoplasma 57: 415–421.
[60]
Shukla D, Kale AD, Hallikerimath S, Vivekanandhan S, Venkatakanthaiah Y (2012) Genetic polymorphism of drug metabolizing enzymes (GSTM1 and CYP1A1) as risk factors for oral premalignant lesions and oral cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub [Epub ahead of print].
[61]
Puga A, Nebert DW, McKinnon RA, Menon AG (1997) Genetic polymorphisms in human drug-metabolizing enzymes: potential uses of reverse genetics to identify genes of toxicological relevance. Crit Rev Toxicol 27: 1999–2222.
[62]
Keen JH, Jakoby WB (1978) Glutathione transferases. Catalysis of nucleophilic reactions of glutathione. J Biol Chem 253: 5654–5657.
[63]
Hayes JD, Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61: 154–166.
[64]
Seidegard J, Vorachek WR, Pero RW, Pearson WR (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85: 7293–7297.
[65]
Strange RC, Jones PW, Fryer AA (2000) Glutathione S-transferase. Genetics and role in toxicology. Toxicol Lett 112–113: 357–363.
[66]
Schroder KR, Hallier E, Meyer DJ, Wiebel FA, Muller AM, et al. (1996) Purification and characterization of a new glutathione S-transferase, class t, from human erythrocytes. Arch Toxicol 70: 559–566.
[67]
Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, et al. (1994) Human glutathione S-transferase t (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300: 271–276.
[68]
Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600.
[69]
Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51–88.
[70]
Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: A review. Mutat Res 463: 247–283.