全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Increasing Strawberry Fruit Sensorial and Nutritional Quality Using Wild and Cultivated Germplasm

DOI: 10.1371/journal.pone.0046470

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Increasing antioxidant levels in fruit through breeding is an important option to support higher antioxidant intake particularly when fruit consumption is low. Indeed, if nutritional components are also combined with a high standard of sensorial fruit quality, the perspective for consumer health can be further improved by encouraging more fruit consumption. Wild species are valued by strawberry breeders as sources of novel traits, especially for pest resistance and abiotic stress tolerance. Furthermore, previous investigations have shown improvements in fruit nutritional quality in breeding material that originated from Fragaria virginiana ssp. glauca (FVG) inter-species crosses. Recently, commercial varieties of strawberries have also shown interesting variability in fruit nutritional quality. Results Strawberry fruit sensorial and nutritional qualities generated by Fragaria inter-species and intra-species crosses were evaluated on 78 offspring derived from 8 families: two that originated from F. × ananassa intra-species crossing; three from back-crossing of F1– FVG × F. × ananassa; and three from back-crossing of BC1– FVG × F. × ananassa. The genetic variability from the three types of cross combinations was analyzed by calculation of the correlations among the fruit sensorial and nutritional parameters. The results obtained show that two subsequent back-crossing generations from an inter-species crossing combination with F. virginiana ssp. glauca provides useful improvement of the fruit nutritional and sensorial qualities that is combined with agronomic standards that are close to those requested at the commercial level. Improvements of these traits can also be achieved by programming F. × ananassa intra-species crosses and producing progeny with productivity traits more similar to those of the commercial cultivars. Conclusions The two types of combination programs (inter-species back-crosses, and intra-species crosses) can be used to improve strawberry nutritional quality.

References

[1]  Meyers KJ, Watkins CB, Pritts MP, Liu RH (2003) Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51: 6887–6892.
[2]  Prior RL, Cao G, Martin A, Sofic N, McEwen J, et al. (1998) Antioxidant capacity as influenced by total phenolic and ACY, maturity and variety of Vaccinium species. J Agric Food Chem 46: 2686–2693.
[3]  Proteggente AR, Pannala AS, Pagana G, Van Buren L, Wagner E, et al. (2002) The antioxidant activity of regular consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36: 217–233.
[4]  Shiow Y, Wang L, Kim S (2007) Antioxidant capacity and flavonoid content in wild strawberries. J Amer Soc of Hort Sci 132: 629–637.
[5]  Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, et al. (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agric Food Chem 2008 56: 696–704.
[6]  Battino M, Beekwilder J, Denoyes-Rothan B, Laimer M, McDougall JG, et al. (2009) Bioactivities of berries relevant to human health. Nutr Rev 67: 145–150.
[7]  Tulipani S, Romandini S, Busco F, Bompadre S, Mezzetti B, et al. (2009) Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chem 117: 181–188.
[8]  Bringhurst RS & Voth V (1978) Origin and evolutionary potentiality of the day-neutral trait in octoploid. Fragaria Genetics 90: 510.
[9]  Della Penna D (2001) Plant metabolic engineering. Plant Physiology 125: 160–163.
[10]  Azodanlou R, Darbellay C, Luisier J, Villettaz J, Amadò R (2003) Quality assessment of strawberry (Fragaria species). J Agric Food Chem 51: 715–721.
[11]  Olsson ME, Ekvall J, Gustavsson K, Nilsson J, Pillai D (2004) Antioxidants, low molecular weight carbohydrates, and TAC in strawberry (Fragaria x ananassa). J Agric Food Chem 52: 2490–2498.
[12]  Scalzo J, Politi A, Mezzetti B, Battino M (2005) Plant genotype affects TAC and phenolic contents in fruit. Nutrition 21: 207–213.
[13]  Wang SY, Zheng W, Galletta GJ (2002) Cultural system affects fruit quality and antioxidant capacity in strawberries. J Agric Food Chem 50: 6534–6542.
[14]  Wang SY, Lewers KS (2007) Antioxidant capacity and flavonoid content in wild strawberries. J Amer Soc Hort Sci 132: 629–637.
[15]  Capocasa F, Diamanti J, Tulipani S, Battino M, Mezzetti B (2008) Breeding strawberry (Fragaria X ananassa Duch) to increase fruit nutritional quality. Bio Factors 34: 67–72.
[16]  Capocasa F, Bordi M, Mezzetti B (2009) Comparing frigo and fresh plant in not fumigated and heavy soil: the response of ten strawberry genotypes. Proc VIth International Strawberry Symposium Acta Hortic (ISHS) 842: 129–133.
[17]  Connor AM, Luby JJ, Tong CBS, Finn CE, Hancock JF (2002) Variation and heritability estimates for antioxidant activity, total phenolic content and ACY in blueberry progenies. J Amer Soc Hort Sci 1: 82–88.
[18]  Connor AM, Stephens MJ, Hall HK, Alspach PA (2005) Variation and heritabilities of antioxidant activity and total phenolic content estimated from a red raspberry factorial experiment. J Amer Soc Hort Sci 3: 130.
[19]  Deighton N, Brennan R, Finn C, Davies HV (2000) Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 80: 1307–1313.
[20]  Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48: 140–146.
[21]  Zhen W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51: 502–509.
[22]  Hancock JF, Luby JJ, Dale A, Callow PW, Serce S, et al. (2002) Utilizing wild Fragaria virginiana in strawberry cultivar development: inheritance of photoperiod sensitivity, fruit size, gender, female fertility and disease resistance. Euphytica 126: 177–184.
[23]  Darrow GM (1966) The strawberry: history, breeding and physiology. Holt, Rinehart, and Winston, New York.
[24]  Lerceteau-K?hler E, Moing A, Guérin G, Renaud C, Petit A, et al. (in press) Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theor Appl Gen DOI: 10.1007/s00122-011-1769-3.
[25]  Zorrilla-Fontanesi Y, Cabeza A, Domínguez P, Medina JJ, Valpuesta V, et al. (2011) Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa), Theor Appl Gen. 123: 755–778.
[26]  Kader AA (1991) Quality and its maintenance in relation to the post-harvest physiology of strawberry. In: Luby JJ, Dale A (eds) Quality and its maintenance in relation to the post-harvest physiology of strawberry. Timber press, Portland, 145–152.
[27]  Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, et al. (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16: 3110–3131.
[28]  Sjulin TM, Dale A (1987) Genetic diversity of North American strawberry cultivars. J Am Soc Hortic Sci 112: 375–385.
[29]  Hancock J, Luby J (1995) Adaptative zones and ancestry of the most important North American strawberry cultivars. Fruit Varieties J 49: 85–90.
[30]  Coelho CM, Wu S, Li YC, Hunter B, Dante RA, et al. (2007) Identification of quantitative trait loci that affect endoreduplication in maize endosperm. Theor Appl Genet 115: 1147–1162.
[31]  Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183: 557–564.
[32]  Carbone F, Preuss A, De Vos RC, D’Amico E, Perrotta G, et al. (2009) Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ 32: 1117–1131.
[33]  Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13: 99–102.
[34]  Karjalainen R, Lehtinen A, Hietaniemi V, Pihlava JM, Jokinen K, et al. (2002) Benzothiadiazole and glycine betaine treatments enhance phenolic compound production in strawberry. Acta Hort. 567: 353–356.
[35]  Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, et al. (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J. Agric. Food Chem. 55: 1862–1870.
[36]  Hebert C, Charles MT, Gauthier L, Willemot C, Khanizadeh S, et al. (2002) Strawberry proanthocyanidins: biochemical markers for Botrytis cinerea resistance and shelf-life predictability. Acta Hort. 567: 659–661.
[37]  Tulipani S, Marzban G, Herndl A, Laimer M, Mezzetti, et al (2011) Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem 124: 906–913.
[38]  Amil-Ruiz F, Blanco-Portales R, Mu?oz-Blanco J, Caballero JL (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol 52: 1873–1903.
[39]  Gooding HJ, Mcnicol RJ, Macintyre D (1981) Methods of screening strawberries for resistance to Sphaerotheca macularis (wall ex Frier) and Phytophthora cactorum (Leb. and Cohn). J. Hort. Sci. Biotechnol. 56: 239–245.
[40]  Harland SC, King E (1957) Inheritance of mildew resistance in Fragaria with special reference to cytoplasmatic effects. Heredity 11: 257.
[41]  Maas J (1998) Compendium of Strawberry Diseases. American Phytopathological Society, St Paul, MN.
[42]  Miller NJ, Rice-Evans C, Davis MJ (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science 83: 407–412.
[43]  Re R, Pellegrini N, Proteggente A, Pannala A, Yang M (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol & Med 26: 1231–1237.
[44]  Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparision with manual methods. Amer J Enol and Vitic 28: 49–55.
[45]  Giusti M, Wrolstad RE (2001) Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Current Protocols in Food Analytical Chemistry. Hoboken: John Wiley and Sons F1.2.1–F1.2.13.
[46]  Hair F, Anderson J, Tatham L, Black C (1998) Multivariate data analysis, 5th edition. Prentice Hall.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133