全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species

DOI: 10.1371/journal.pone.0046578

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. Methodology and Principal Findings Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. Conclusions Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.

References

[1]  LaVal RK (1973) A revision of the neotropical bats of the genus Myotis. Bull Nat Hist Mus of Los Angeles County 15: 1–54.
[2]  Ruedi M, Mayer F (2001) Molecular systematics of bats the genus Myotis (Vespertilionidae) suggests deterministic ecomorphology convergences. Mol Phylogenet Evol 21: 436–448.
[3]  Stadelmann B, Lin L-K, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43: 32–48.
[4]  Miller Jr GS, Allen GM (1928) The American bats of the genus Myotis and Pizonyx. Bull U S Nat Mus 144: 1–218.
[5]  Bogan MA (1978) A new species of Myotis from the Islas Tres Marias, Nayarit, Mexico, with comments on variation in Myotis nigricans. J Mammal 59: 519–530.
[6]  Baud FJ, Menu H (1993) Paraguayan bats of the genus Myotis, with a redefinition of M. simus (Thomas, 1901). Rev Suisse Zool 100: 595–607.
[7]  Barquez RM, Mares MA, Braun JK (1999) The bats of Argentina. Spec Pub Mus Tex Tech Univ 42: 1–275.
[8]  Lopez-Gonzalez C, Presley SJ, Owen RD, Willig MR (2001) Taxonomic status of Myotis (Chiroptera: Vespertilionidae) in Paraguay. J Mammal 82: 138–160.
[9]  Dewey TA (2006) Systematics and phylogeography of North American Myotis. PhD Dissertation, University of Michigan, Ann Arbor Michigan.
[10]  Aires CC (2008) Caracteriza??o das espécies brasileiras de Myotis Kaup, 1829 (Chiroptera: Vespertilionidae) e ensaio sobre filogeografia de Myotis nigricans (Schinz, 1821) e Myotis riparius Handley, 1960. PhD Dissertation, Universidade de S?o Paulo, S?o Paulo Brazil.
[11]  Bornholdt R, Oliveira LR, Fabian ME (2008) Size and shape variability in the skull of Myotis nigricans (Schinz, 1821) (Chiroptera: Vespertilionidae) from two geographic areas in Brazil. Brazi J Biol 68: 623–631.
[12]  Moratelli R, Peracchi AL, Dias D, de Oliveira JA (2011) Geographic variation in South American populations of Myotis nigricans (Schinz, 1821) (Chiroptera, Vespertilionidae), with the description of two new species. Mamm Biol 76: 592–607.
[13]  Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference 3rd edition Volume 1. Baltimore Maryland: Johns Hopkins University Press. 312–529.
[14]  Wilson DE (2008) Genus Myotis Kaup, 1829. In: Gardner AL, editor. Mammals of South America, Vol. 1: Marsupials, Xenarthrans, Shrews, and Bats. Chicago Illinois: University Chicago Press. 468–481.
[15]  Moratelli R, Wilson DE (2011) A new species of Myotis Kaup, 1829 (Chiroptera, Vespertilionidae) from Ecuador. Mamm Biol 76: 608–614.
[16]  Larsen RJ, Larsen PA, Genoways HH, Catzeflis FM, Geluso K, et al. (2012) Evolutionary history of Caribbean species of Myotis, with evidence of a third Lesser Antillean endemic. Mamm Biol 77: 124–134.
[17]  Bradley RD, Baker RJ (2001) A test of the Genetic Species Concept: cytochrome-b sequences and mammals. J Mammal 82: 960–973.
[18]  Baker RJ, Bradley RD (2006) Speciation in mammals and the Genetic Species Concept. J Mammal 87: 643–662.
[19]  Mayer F, Dietz C, Kiefer A (2007) Molecular species identification boosts bat diversity. Front Zool 4: doi:10.1186/1742-9994-4-4.
[20]  Clare EL, Lim BK, Fenton MB, Hebert PDN (2011) Neotropical bats: estimating species diversity with DNA barcodes. PLoS ONE 6: e22648 doi:10.1371/journal.pone.0022648.
[21]  Clare EL (2011) Cryptic species? Patterns of maternal and paternal gene flow in eight Neotropical bats. PLoS ONE 6: e21460 doi:10.1371/journal.pone.0021460.
[22]  Longmire JL, Maltbie M, Baker RJ (1997) Use of “lysis buffer” in DNA isolation and its implication for museum collections. Occas Pap Tex Tech Univ Mus 163: 1–3.
[23]  Maddison DR, Maddison WR (2005) MacClade 4.08. Sunderland Massachusetts: Sinauer Associates, Inc., Publishers.
[24]  Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.
[25]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform App Note 19: 1572–1574.
[26]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al.. (2011) MEGA5: Molecular Evolutionary Genetics Analysis (MEGA) using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol doi: 10.1093/molbev/msr121.
[27]  Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299–306.
[28]  Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sunderland Massachusetts: Sinauer Associates, Inc., Publishers.
[29]  Rodriguez RM, Ammerman LK (2004) Mitochondrial DNA divergence does not reflect morphological difference between Myotis californicus and Myotis ciliolabrum.. J Mammal 85: 842–851.
[30]  Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7: 184–190.
[31]  Stadelmann B, Herrera LG, Arroyo-Cabrales J, Flores-Martinez JJ, May BP, et al. (2004) Moelcular systematics of the fishing bat Myotis (Pizonyx) vivesi. J Mammal 85: 133–139.
[32]  Stadelmann B, Jacobs DS, Shoeman C, Ruedi M (2004) Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropt 6: 177–192.
[33]  Xia XH, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26: 1–7.
[34]  Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M, editors. The phylogenetic handbook: a practical approach to DNA and protein phylogeny. 2nd edition. Cambridge University Press. 615–630.
[35]  Xia X, Xie Z (2001) DAMBE: Data analysis in molecular biology and evolution. J Heredity 92: 371–373.
[36]  Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, et al. (2010) The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS ONE 5: e12575 doi:10.1371/journal.pone.0012575.
[37]  Lim BK (2009) Review of the origins and biogeography of bats in South America. Chiropt Neotrop 15: 391–410.
[38]  Ditchfield AD (2000) The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasts to nonvolant small mammals. Mol Ecol 9: 1307–1318.
[39]  Moratelli R, Peracchi AL, de Oliveira JA (2011) Morphometric and morphological variation in Myotis simus Thomas (Chiroptera, Vespertilionidae), with an appraisal of the identity of Myotis guaycuru Proenca based on the analysis of the type material. Zootaxa 2985: 41–54.
[40]  Moratelli R, de Oliveira JA (2011) Morphometric and morphological variation in South American populations of Myotis albescens (Chiroptera: Vespertilionidae). Zoologia 28: 789–802.
[41]  Weller TJ, Scott SA, Rodhouse TJ, Ormsbee PC, Zinck JM (2007) Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis. Acta Chiropt 9: 133–147.
[42]  Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, et al. (2008) Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18: 717–728.
[43]  Thomas J, Sorourian M, Ray D, Baker RJ, Pritham EJ (2011) The limited distribution of Helitrons to vesper bats supports horizontal transfer. Gene 474: 52–58.
[44]  Carstens BC, Dewey TA (2010) Species delimitation using a combined coalescent and information-theoretic approach: an example from North American Myotis bats. Syst Biol 59: 400–414.
[45]  Lack JB, Van Den Bussche RA (2010) Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J Mammal 91: 1435–1448.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133