Exchange proteins directly activated by cAMP (EPACs) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we have combined site-directed mutagenesis, X-ray crystallography, and peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) to probe the structural and conformational dynamics of EPAC2-F435G, a constitutively active EPAC2 mutant. Our study demonstrates that conformational dynamics plays a critical role in cAMP-induced EPAC activation. A glycine mutation at 435 position shifts the equilibrium of conformational dynamics towards the extended active conformation.
References
[1]
de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, et al. (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396: 474–477 doi:10.1038/24884.
[2]
Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, et al. (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282: 2275–2279.
[3]
de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, et al. (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275: 20829–20836 doi:10.1074/jbc.M001113200.
[4]
VanSchouwen B, Selvaratnam R, Fogolari F, Melacini G (2011) Role of dynamics in the autoinhibition and activation of the exchange protein directly activated by cyclic AMP (EPAC). J Biol Chem 286: 42655–42669 doi:10.1074/jbc.M111.277723.
[5]
Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439: 625–628 doi:10.1038/nature04468.
[6]
Rehmann H, Arias-Palomo E, Hadders MA, Schwede F, Llorca O, et al. (2008) Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455: 124–127 doi:10.1038/nature07187.
[7]
Rehmann H, Rueppel A, Bos JL, Wittinghofer A (2003) Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278: 23508–23514 doi:10.1074/jbc.M301680200.
[8]
Yu S, Fan F, Flores SC, Mei F, Cheng X (2006) Dissecting the mechanism of Epac activation via hydrogen-deuterium exchange FT-IR and structural modeling. Biochemistry 45: 15318–15326 doi:10.1021/bi061701x.
[9]
Tsalkova T, Blumenthal DK, Mei FC, White MA, Cheng X (2009) Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities. J Biol Chem 284: 23644–23651 doi:10.1074/jbc.M109.024950.
[10]
Li S, Tsalkova T, White MA, Mei FC, Liu T, et al. (2011) Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS). J Biol Chem 286: 17889–17897 doi:10.1074/jbc.M111.224535.
[11]
Harper SM, Wienk H, Wechselberger RW, Bos JL, Boelens R, et al. (2008) Structural dynamics in the activation of Epac. J Biol Chem 283: 6501–6508 doi:10.1074/jbc.M707849200.
[12]
Das R, Mazhab-Jafari MT, Chowdhury S, Sildas S, Selvaratnam R, et al. (2008) Entropy-driven cAMP-dependent allosteric control of inhibitory interactions in exchange proteins directly activated by cAMP. J Biol Chem 283: 19691–19703 M802164200 [pii];10.1074/jbc.M802164200 [doi].
[13]
Selvaratnam R, Chowdhury S, Vanschouwen B, Melacini G (2011) Mapping allostery through the covariance analysis of NMR chemical shifts. Proc Natl Acad Sci U S A 108: 6133–6138 1017311108 [pii];10.1073/pnas.1017311108 [doi].
[14]
Selvaratnam R, Vanschouwen B, Fogolari F, Mazhab-Jafari MT, Das R, et al. (2012) The Projection Analysis of NMR Chemical Shifts Reveals Extended EPAC Autoinhibition Determinants. Biophys J 102: 630–639.
[15]
Brunger AT (2007) Version 1.2 of the Crystallography and NMR system. Nat Protoc 2: 2728–2733 doi:10.1038/nprot.2007.406.
[16]
Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.
[17]
Scott EE, White MA, He YA, Johnson EF, Stout CD, et al. (2004) Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279: 27294–27301 doi:10.1074/jbc.M403349200.
[18]
Singh R, White MA, Ramana KV, Petrash JM, Watowich SJ, et al. (2006) Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins 64: 101–110 doi:10.1002/prot.20988.
[19]
Russo AT, White MA, Watowich SJ (2006) The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease. Structure 14: 1449–1458 doi:10.1016/j.str.2006.07.010.
[20]
Driessen HP, Bax B, Slingsby C, Lindley PF, Mahadevan D, et al. (1991) Structure of oligomeric beta B2-crystallin: an application of the T2 translation function to an asymmetric unit containing two dimers. Acta Crystallogr, B 47(Pt 6) 987–997.
[21]
Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, et al. (2012) Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallographica Section D Biological Crystallography 68: 381–390 doi:10.1107/S0907444911047834.
[22]
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21 doi:10.1107/S0907444909042073.
[23]
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501 doi:10.1107/S0907444910007493.
[24]
Bordoli L, Schwede T (2012) Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol 857: 107–136 doi:10.1007/978-1-61779-588-6_5.
[25]
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37: D387–392 doi:10.1093/nar/gkn750.
[26]
Brock M, Fan F, Mei FC, Li S, Gessner C, et al. (2007) Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem 282: 32256–32263 doi:10.1074/jbc.M706231200.
[27]
Pantazatos D, Kim JS, Klock HE, Stevens RC, Wilson IA, et al. (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc Natl Acad Sci USA 101: 751–756 doi:10.1073/pnas.0307204101.
[28]
Hamuro Y, Anand GS, Kim JS, Juliano C, Stranz DD, et al. (2004) Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS). J Mol Biol 340: 1185–1196 doi:10.1016/j.jmb.2004.05.042.
[29]
Tsalkova T, Mei FC, Li S, Chepurny OG, Leech CA, et al. (2012) Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci U S A 1210209109 [pii];10.1073/pnas.1210209109 [doi].
[30]
Almahariq M, Tsalkova T, Fang MC, Chen H, Zhou J, et al. (2012) A Novel EPAC Specific Inhibitor Suppresses Pancreatic Cancer Cell Migration and Invasion. Mol Pharmacol mol.112.080689 [pii];10.1124/mol.112.080689 [doi].
[31]
Chen H, Tsalkova T, Mei FC, Hu Y, Cheng X, et al. (2012) 5-Cyano-6-oxo-1,6-dihydro-pyrimidines as potent antagonists targeting exchange proteins directly activated by cAMP. Bioorg Med Chem Lett 22: 4038–4043 S0960-894X(12)00532-X [pii];10.1016/j.bmcl.2012.04.082 [doi].