Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D) and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP). HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP265–273-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγnull mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies.
References
[1]
Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: As good as it gets? Nat Med 5: 601–04.
[2]
Atkinson MA, Maclaren NK (1994) The Pathogenesis of Insulin-Dependent Diabetes Mellitus. The New England journal of medicine 331: 1428–36.
[3]
Roep BO, Atkinson M, von Herrath M (204) Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol 4: 989–97.
[4]
In’t Veld P, Lievens D, De Grijse J, Ling Z, Van der Auwera B, et al. (2007) Screening for Insulitis in Adult Autoantibody-Positive Organ Donors. Diabetes 56: 2400–04.
[5]
Kantwerk G, Cobbold S, Waldmann H, Kolb H (1987) L3T4 and Lyt-2 T cells are both involved in the generation of low-dose streptozotocin-induced diabetes in mice. Clin Exp Immunol 70: 585–92.
[6]
Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC (1994) Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 43: 505–09.
[7]
Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, et al. (1994) Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43: 500–04.
[8]
Santamaria P, Utsugi T, Park BJ, Averill N, Kawazu S, et al. (1995) Beta-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor alpha-chain CDR3 sequences. J Immunol 154: 2494–03.
[9]
Wong FS, Visintin I, Wen L, Flavell RA, Janeway CA Jr (1996) CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med 183: 67–76.
[10]
Graser RT, DiLorenzo TP, Wang F, Christianson GJ, Chapman HD, et al. (2000) Identification of a CD8 T Cell That Can Independently Mediate Autoimmune Diabetes Development in the Complete Absence of CD4 T Cell Helper Functions. J Immunol 164: 3913–18.
[11]
Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, et al. (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 102: 18425–30.
[12]
Fennessy M, Metcalfe K, Hitman GA, Niven M, Biro PA, et al. (1994) A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia 37: 937–44.
[13]
Marron MP, Graser RT, Chapman HD, Serreze DV (2002) Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice. Proc Natl Acad Sci USA 99: 13753–58.
[14]
Han B, Serra P, Amrani A, Yamanouchi J, Maree AF, et al. (2005) Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 11: 645–52.
[15]
Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, et al. (2003) Identification of the {beta} cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci USA 100: 8384–88.
[16]
Takaki T, Marron MP, Mathews CE, Guttmann ST, Bottino R, et al. (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176: 3257–65.
[17]
Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, et al. (2007) CD8+ T-Cell Responses Identify {beta}-Cell Autoimmunity in Human Type 1 Diabetes. Diabetes 56: 613–21.
[18]
Jarchum I, Nichol L, Trucco M, Santamaria P, DiLorenzo TP (2008) Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol 127: 359–65.
[19]
Skowera A, Ellis RJ, Varela-Calvino R, Arif S, Huang GC, et al. (2008) Glucose-regulated cytotoxic T-cell epitope of preproinsulin targets killing of beta-cells in human Type 1 diabetes. J Clin Invest 118: 3390–402.
[20]
Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, et al. (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp.Med 209: 51–60.
[21]
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, et al. (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174: 6477–89.
[22]
Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, et al. (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chainnull mice. Blood 106: 1565–73.
[23]
Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, et al. (2002) NOD/SCID/gamma cnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175–82.
[24]
King M, Pearson T, Shultz LD, Leif J, Bottino R, et al. (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126: 303–14.
[25]
Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, et al. (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One 4: e7251.
[26]
Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, et al. (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206: 1423–34.
[27]
Unger WWJ, Pinkse,GGM, Mulder-van der Kracht S, van der Slik AR, Kester MGD, et al. (2007) Human Clonal CD8 Autoreactivity to an IGRP Islet Epitope Shared between Mice and Men. Ann NY Acad Sci 1103: 192–95.
Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev.Immunol 8: 247–258.
[30]
Pittet MJ, Rubio-Godoy V, Bioley G, Guillaume P, Batard P, et al. (2003) Alpha 3 domain mutants of peptide/MHC class I multimers allow the selective isolation of high avidity tumor-reactive CD8 T cells. J Immunol 171: 1844–49.
[31]
Laugel B, van den Berg HA, Gostick E, Cole DK, Wooldridge L, et al. (2007) Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem 282: 23799–10.
[32]
Salter RD, Benjamin RJ, Wesley PK, Buxton SE, Garrett TP, et al. (1990) A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature 345: 41–46.
[33]
Demotte N, Stroobant V, Courtoy PJ, Van Der SP, Colau D, et al. (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28: 414–24.
[34]
Van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, et al. (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4: 361–65.
[35]
Jarchum I, Baker JC, Yamada T, Takaki T, Marron MP, et al. (2007) In Vivo Cytotoxicity of Insulin-Specific CD8+ T-Cells in HLA-A*0201 Transgenic NOD Mice. Diabetes 56: 2551–60.
[36]
van Halteren AG, Kardol MJ, Mulder A, Roep BO (2005) Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice. Diabetologia 48: 75–82.
[37]
Roep BO, Kleijwegt FS, van Halteren AG, Bonato V, Boggi U, et al. (2010) Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 159: 338–43.
[38]
Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462: 510–13.
[39]
Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, et al. (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 31: 643–53.
[40]
Yamanouchi J, Verdaguer J, Han B, Amrani A, Serra P, et al. (2003) Cross-priming of diabetogenic T cells dissociated from CTL-induced shedding of beta cell autoantigens. J Immunol 171: 6900–09.
[41]
Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM (2003) Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci USA 100: 6688–93.
[42]
van Halteren AG, Roep BO, Gregori S, Cooke A, van Ewijk W, et al. (2002) Cross-reactive mycobacterial and self hsp60 epitope recognition in I-A(g7) expressing NOD, NOD-asp and Biozzi AB/H mice. J Autoimmun 18: 139–47.
[43]
Rhode A, Pauza ME, Barral AM, Rodrigo E, Oldstone MB, et al. (2005) Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 175: 3516–24.
[44]
Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, et al. (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116: 3258–65.
[45]
Whitfield-Larry F, Young EF, Talmage G, Fudge E, Azam A, et al. (2011) HLA-A 2 Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/gcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells. Diabetes 60: 1726–33.
[46]
Niens M, Grier AE, Marron M, Kay TW, Greiner DL, et al. (2011) Prevention of “Humanized” diabetogenic CD8 T-cell responses in HLA-transgenic NOD mice by a multipeptide coupled-cell approach. Diabetes 60: 1229–36.
[47]
Levisetti MG, Lewis DM, Suri A, Unanue ER (2008) Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice. Diabetes 57: 1852–60.
[48]
Velthuis JH, Unger WW, van der Slik AR, Duinkerken G, Engelse M, et al. (2009) Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia 52: 494–03.
[49]
Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154: 180–91.
[50]
Altman JD, Moss PAH, Goulder PJR, Barouch DH, Heyzer-Williams MG, et al. (1996) Phenotypic Analysis of Antigen-Specific T Lymphocytes. Science 274: 94–96.
[51]
Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, et al. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281: 65–78.
[52]
Murray AG, Petzelbauer P, Hughes CCW, Costa J, Askenase P, et al. (1994) Human T-Cell-Mediated Destruction of Allogeneic Dermal Microvessels in a Severe Combined Immunodeficient Mouse. Proc Natl Acad Sci USA 91: 9146–50.