Background The emergence of severe acute respiratory syndrome (SARS) in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV) infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs) infected with SARS-CoV. Methods and Findings In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain. Conclusions SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children.
References
[1]
Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349: 2431–2441.
[2]
Chan-Yeung M, Xu RH (2003) SARS: Epidemiology. Respirology 8: SupplS9–14.
[3]
World Health Organization (2003) Severe acute repiratory syndrome (SARS): Report by the secretariat. Geneva: WHO Executive Board. EB113/33.
[4]
Struck D ((2003 April 26)) Virus takes toll on Asian dynamos: Economic growth projections sag as SARS crisis slows business and tourist travel. Washington Post 17. Sect. A.
[5]
World Health Organization (2003) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 based on data as of 31 December 2003. Geneva: WHO Communicable Disease Surveillance & Response. Available at: http://www.who.int/csr/sars/country/tabl?e2004_04_21/en/index.html. Accessed 01 November, 2005 .
[6]
Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, et al. (2003) Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289: 2801–2809.
[7]
Holmes KV (2003) SARS coronavirus: A new challenge for prevention and therapy. J Clin Invest 111: 1605–1609.
[8]
Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, et al. (2004) Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101: 6641–6646.
[9]
Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, et al. (2004) Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78: 3572–3577.
[10]
Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, et al. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561–564.
[11]
Hogan RJ, Gao G, Rowe T, Bell P, Flieder D, et al. (2004) Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol 78: 11416–11421.
[12]
Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, et al. (2003) Virology: SARS virus infection of cats and ferrets. Nature 425: 915.
[13]
ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, et al. (2004) Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363: 2139–2141.
[14]
Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, et al. (2004) Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 78: 12672–12676.
[15]
Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, et al. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302: 276–278.
[16]
Wu D, Tu C, Xin C, Xuan H, Meng Q, et al. (2005) Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J Virol 79: 2620–2625.
[17]
Weingartl HM, Copps J, Drebot MA, Marszal P, Smith G, et al. (2004) Susceptibility of pigs and chickens to SARS coronavirus. Emerg Infect Dis 10: 179–184.
[18]
Li W, Shi Z, Yu M, Ren W, Smith C, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676–679.
[19]
Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, et al. (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100: 12995–13000.
[20]
McAuliffe J, Vogel L, Roberts A, Fahle G, Fischer S, et al. (2004) Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330: 8–15.
[21]
Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, et al. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240.
[22]
Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, et al. (2004) Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363: 2122–2127.
[23]
Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, et al. (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362: 263–270.
[24]
Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, et al. (2004) Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10: 290–293.
[25]
Rowe T, Gao G, Hogan RJ, Crystal RG, Voss TG, et al. (2004) Macaque model for severe acute respiratory syndrome. J Virol 78: 11401–11404.
[26]
Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, et al. (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 361: 1767–1772.
[27]
Christian MD, Poutanen SM, Loutfy MR, Muller MP, Low DE (2004) Severe acute respiratory syndrome. Clin Infect Dis 38: 1420–1427.
[28]
Wong KT, Antonio GE, Hui DS, Lee N, Yuen EH, et al. (2003) Severe acute respiratory syndrome: Radiographic appearances and pattern of progression in 138 patients. Radiology 228: 401–406.
[29]
Singh K, Eong OE, Kumarsil B, Saw S, Sethi S (2004) Severe acute respiratory syndrome without respiratory symptoms or abnormal chest radiograph findings. Clin Infect Dis 38: 585–586.
[30]
Ho KY, Singh KS, Habib AG, Ong BK, Lim TK, et al. (2004) Mild illness associated with severe acute respiratory syndrome coronavirus infection: Lessons from a prospective seroepidemiologic study of health-care workers in a teaching hospital in Singapore. J Infect Dis 189: 642–647.
[31]
Lai EK, Deif H, Lamere EA, Pham DH, Wolff B, et al. (2005) Severe acute respiratory syndrome: Quantitative assessment from chest radiographs with clinical and prognostic correlation. Am J Roentgenol 184: 255–263.
[32]
Grinblat L, Shulman H, Glickman A, Matukas L, Paul N (2003) Severe acute respiratory syndrome: Radiographic review of 40 probable cases in Toronto, Canada. Radiology 228: 802–809.
[33]
Paul NS, Chung T, Konen E, Roberts HC, Rao TN, et al. (2004) Prognostic significance of the radiographic pattern of disease in patients with severe acute respiratory syndrome. Am J Roentgenol 182: 493–498.
[34]
Chau TN, Lee PO, Choi KW, Lee CM, Ma KF, et al. (2004) Value of initial chest radiographs for predicting clinical outcomes in patients with severe acute respiratory syndrome. Am J Med 117: 249–254.
[35]
Wong GW, Li AM, Ng PC, Fok TF (2003) Severe acute respiratory syndrome in children. Pediatr Pulmonol 36: 261–266.
[36]
Bitnun A, Allen U, Heurter H, King SM, Opavsky MA, et al. (2003) Children hospitalized with severe acute respiratory syndrome-related illness in Toronto. Pediatrics 112: e261.
[37]
Hon KL, Leung CW, Cheng WT, Chan PK, Chu WC, et al. (2003) Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 361: 1701–1703.
[38]
Leung CW, Kwan YW, Ko PW, Chiu SS, Loung PY, et al. (2004) Severe acute respiratory syndrome among children. Pediatrics 113: e535–e543.
[39]
Chiu WK, Cheung PC, Ng KL, Ip PL, Sugunan VK, et al. (2003) Severe acute respiratory syndrome in children: Experience in a regional hospital in Hong Kong. Pediatr Crit Care Med 4: 279–283.
[40]
Leung TF, Wong GW, Hon KL, Fok TF (2003) Severe acute respiratory syndrome (SARS) in children: Epidemiology, presentation and management. Paediatr Respir Rev 4: 334–339.
[41]
Puthucheary J, Lim D, Chan I, Chay OM, Choo P (2004) Severe acute respiratory syndrome in Singapore. Arch Dis Child 89: 551–556.
[42]
Babyn PS, Chu WC, Tsou IY, Wansaicheong GK, Allen U, et al. (2004) Severe acute respiratory syndrome (SARS): Chest radiographic features in children. Pediatr Radiol 34: 47–58.
[43]
Tsou IY, Loh LE, Kaw GJ, Chan I, Chee TS (2004) Severe acute respiratory syndrome (SARS) in a paediatric cluster in Singapore. Pediatr Radiol 34: 43–46.
[44]
Cui W, Fan Y, Wu W, Zhang F, Wang JY, et al. (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37: 857–859.
[45]
Li Z, Guo X, Hao W, Wu Y, Ji Y, et al. (2003) The relationship between serum interleukins and T-lymphocyte subsets in patients with severe acute respiratory syndrome. Chin Med J (Engl) 116: 981–984.
[46]
Tang X, Yin C, Zhang F, Fu Y, Chen W, et al. (2003) Measurement of subgroups of peripheral blood T lymphocytes in patients with severe acute respiratory syndrome and its clinical significance. Chin Med J (Engl) 116: 827–830.
[47]
Wong RS, Wu A, To KF, Lee N, Lam CW, et al. (2003) Haematological manifestations in patients with severe acute respiratory syndrome: Retrospective analysis. BMJ 326: 1358–1362.
[48]
Lam MF, Ooi GC, Lam B, Ho JC, Seto WH, et al. (2004) An indolent case of severe acute respiratory syndrome. Am J Respir Crit Care Med 169: 125–128.
[49]
Wong KC, Leung KS, Hui M (2003) Severe acute respiratory syndrome (SARS) in a geriatric patient with a hip fracture. A case report. J Bone Joint Surg Am 85: 1339–1342. -A.
[50]
Ng EK, Ng PC, Hon KL, Cheng WT, Hung EC, et al. (2003) Serial analysis of the plasma concentration of SARS coronavirus RNA in pediatric patients with severe acute respiratory syndrome. Clin Chem 49: 2085–2088.
[51]
Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, et al. (2004) Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 136: 95–103.
[52]
Zhang Y, Li J, Zhan Y, Wu L, Yu X, et al. (2004) Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun 72: 4410–4415.
[53]
Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, et al. (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75: 185–194.
[54]
Ng PC, Lam CW, Li AM, Wong CK, Cheng FW, et al. (2004) Inflammatory cytokine profile in children with severe acute respiratory syndrome. Pediatrics 113: e7–e14.