全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2009 

Blood Glucose and Risk of Incident and Fatal Cancer in the Metabolic Syndrome and Cancer Project (Me-Can): Analysis of Six Prospective Cohorts

DOI: 10.1371/journal.pmed.1000201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Prospective studies have indicated that elevated blood glucose levels may be linked with increased cancer risk, but the strength of the association is unclear. We examined the association between blood glucose and cancer risk in a prospective study of six European cohorts. Methods and Findings The Metabolic syndrome and Cancer project (Me-Can) includes cohorts from Norway, Austria, and Sweden; the current study included 274,126 men and 275,818 women. Mean age at baseline was 44.8 years and mean follow-up time was 10.4 years. Excluding the first year of follow-up, 18,621 men and 11,664 women were diagnosed with cancer, and 6,973 men and 3,088 women died of cancer. We used Cox regression models to calculate relative risk (RR) for glucose levels, and included adjustment for body mass index (BMI) and smoking status in the analyses. RRs were corrected for regression dilution ratio of glucose. RR (95% confidence interval) per 1 mmol/l increment of glucose for overall incident cancer was 1.05 (1.01–1.10) in men and 1.11 (1.05–1.16) in women, and corresponding RRs for fatal cancer were 1.15 (1.07–1.22) and 1.21 (1.11–1.33), respectively. Significant increases in risk among men were found for incident and fatal cancer of the liver, gallbladder, and respiratory tract, for incident thyroid cancer and multiple myeloma, and for fatal rectal cancer. In women, significant associations were found for incident and fatal cancer of the pancreas, for incident urinary bladder cancer, and for fatal cancer of the uterine corpus, cervix uteri, and stomach. Conclusions Data from our study indicate that abnormal glucose metabolism, independent of BMI, is associated with an increased risk of cancer overall and at several cancer sites. Our data showed stronger associations among women than among men, and for fatal cancer compared to incident cancer. Please see later in the article for the Editors' Summary

References

[1]  Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, et al. (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293: 194–202.
[2]  Rapp K, Schroeder J, Klenk J, Ulmer H, Concin H, et al. (2006) Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia 49: 945–952.
[3]  Stattin P, Bjor O, Ferrari P, Lukanova A, Lenner P, et al. (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30: 561–567.
[4]  Tulinius H, Sigfusson N, Sigvaldason H, Bjarnadottir K, Tryggvadottir L (1997) Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 6: 863–873.
[5]  Levine W, Dyer AR, Shekelle RB, Schoenberger JA, Stamler J (1990) Post-load plasma glucose and cancer mortality in middle-aged men and women. 12-year follow-up findings of the Chicago Heart Association Detection Project in Industry. Am J Epidemiol 131: 254–262.
[6]  Saydah SH, Loria CM, Eberhardt MS, Brancati FL (2003) Abnormal glucose tolerance and the risk of cancer death in the United States. Am J Epidemiol 157: 1092–1100.
[7]  Smith GD, Egger M, Shipley MJ, Marmot MG (1992) Post-challenge glucose concentration, impaired glucose tolerance, diabetes, and cancer mortality in men. Am J Epidemiol 136: 1110–1114.
[8]  Emberson JR, Whincup PH, Morris RW, Walker M, Lowe GD, et al. (2004) Extent of regression dilution for established and novel coronary risk factors: results from the British Regional Heart Study. Eur J Cardiovasc Prev Rehabil 11: 125–134.
[9]  Whitlock G, Clark T, Vander Hoorn S, Rodgers A, Jackson R, et al. (2001) Random errors in the measurement of 10 cardiovascular risk factors. Eur J Epidemiol 17: 907–909.
[10]  Clarke R, Shipley M, Lewington S, Youngman L, Collins R, et al. (1999) Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol 150: 341–353.
[11]  Wood AM, White I, Thompson SG, Lewington S, Danesh J (2006) Regression dilution methods for meta-analysis: assessing long-term variability in plasma fibrinogen among 27,247 adults in 15 prospective studies. Int J Epidemiol 35: 1570–1578.
[12]  MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, et al. (1990) Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335: 765–774.
[13]  Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, et al. (2008) Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med 5: e78. doi:10.1371/journal.pmed.0050078.
[14]  Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG (2008) Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 300: 2142–2152.
[15]  Stocks T, Borena W, Strohmaier S, Bjorge T, Manjer J, et al. (2009) Cohort Profile: The Metabolic syndrome and Cancer project (Me-Can). Int J Epidemiol. In press.
[16]  Leren P, Askevold EM, Foss OP, Froili A, Grymyr D, et al. (1975) The Oslo study. Cardiovascular disease in middle-aged and young Oslo men. Acta Med Scand Suppl 588: 1–38.
[17]  Lund Haheim L, Wisloff TF, Holme I, Nafstad P (2006) Metabolic syndrome predicts prostate cancer in a cohort of middle-aged Norwegian men followed for 27 years. Am J Epidemiol 164: 769–774.
[18]  Bjartveit K, Foss OP, Gjervig T (1983) The cardiovascular disease study in Norwegian counties. Results from first screening. Acta Med Scand Suppl 675: 1–184.
[19]  Tverdal A, Foss OP, Leren P, Holme I, Lund-Larsen PG, et al. (1989) Serum triglycerides as an independent risk factor for death from coronary heart disease in middle-aged Norwegian men. Am J Epidemiol 129: 458–465.
[20]  Naess O, Sogaard AJ, Arnesen E, Beckstrom AC, Bjertness E, et al. (2008) Cohort profile: cohort of Norway (CONOR). Int J Epidemiol 37: 481–485.
[21]  Aires N, Selmer R, Thelle D (2003) The validity of self-reported leisure time physical activity, and its relationship to serum cholesterol, blood pressure and body mass index. A population based study of 332,182 men and women aged 40–42 years. Eur J Epidemiol 18: 479–485.
[22]  Lindahl B, Weinehall L, Asplund K, Hallmans G (1999) Screening for impaired glucose tolerance. Results from a population-based study in 21,057 individuals. Diabetes Care 22: 1988–1992.
[23]  Berglund G, Eriksson KF, Israelsson B, Kjellstrom T, Lindgarde F, et al. (1996) Cardiovascular risk groups and mortality in an urban Swedish male population: the Malmo Preventive Project. J Intern Med 239: 489–497.
[24]  Berglund G, Nilsson P, Eriksson KF, Nilsson JA, Hedblad B, et al. (2000) Long-term outcome of the Malmo preventive project: mortality and cardiovascular morbidity. J Intern Med 247: 19–29.
[25]  Bjartveit K, Foss OP, Gjervig T, Lund-Larsen PG (1979) The cardiovascular disease study in Norwegian counties. Background and organization. Acta Med Scand Suppl 634: 1–70.
[26]  Eurostat (1998) European shortlist for causes of death, 1998. Available: http://ec.europa.eu/eurostat/ramon/nomen?clatures/index.cfm?TargetUrl=LST_NOM_DTL?&StrNom=COD_1998. Accessed 1 December 2008.
[27]  Doll R, Cook P (1967) Summarizing indices for comparison of cancer incidence data. Int J Cancer 2: 269–279.
[28]  Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, et al. (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81: 1879–1886.
[29]  World Health Organisation (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1: Diagnosis and classification of diabetes mellitus. Geneva: World Health Organisation.
[30]  Boyle P, Levin B (2008) World Cancer Report 2008. Lyon: International Agency for Research on Cancer (IARC).
[31]  Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, et al. (2001) The relation of type 2 diabetes and cancer. Diabetes Technol Ther 3: 263–274.
[32]  Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, et al. (1997) Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 89: 1360–1365.
[33]  Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ (2004) Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159: 1160–1167.
[34]  Sasco AJ, Secretan MB, Straif K (2004) Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 45: Suppl 2S3–9.
[35]  Preston-Martin S, Franceschi S, Ron E, Negri E (2003) Thyroid cancer pooled analysis from 14 case-control studies: what have we learned? Cancer Causes Control 14: 787–789.
[36]  Negri E, Dal Maso L, Ron E, La Vecchia C, Mark SD, et al. (1999) A pooled analysis of case-control studies of thyroid cancer. II. Menstrual and reproductive factors. Cancer Causes Control 10: 143–155.
[37]  La Vecchia C, Ron E, Franceschi S, Dal Maso L, Mark SD, et al. (1999) A pooled analysis of case-control studies of thyroid cancer. III. Oral contraceptives, menopausal replacement therapy and other female hormones. Cancer Causes Control 10: 157–166.
[38]  Dossus L, Kaaks R (2008) Nutrition, metabolic factors and cancer risk. Best Pract Res Clin Endocrinol Metab 22: 551–571.
[39]  Warburg O (1956) On the origin of cancer cells. Science 123: 309–314.
[40]  Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53: 233–256.
[41]  Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274: 1393–1418.
[42]  Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, et al. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39: 977–983.
[43]  Kasper JS, Giovannucci E (2006) A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 2056–2062.
[44]  World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington (D.C.): AICR.
[45]  Johansson LA, Westerling R (2000) Comparing Swedish hospital discharge records with death certificates: implications for mortality statistics. Int J Epidemiol 29: 495–502.
[46]  Johansson LA, Westerling R (2002) Comparing hospital discharge records with death certificates: can the differences be explained? J Epidemiol Community Health 56: 301–308.
[47]  Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, et al. (2007) Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 116: 151–157.
[48]  The DECODE study group (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 161: 397–405.
[49]  Nakagami T (2004) Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia 47: 385–394.
[50]  Cancer Registry of Norway (2006) Cancer in Norway 2006. Available: http://www.kreftregisteret.no/no/Generel?t/Publikasjoner/Cancer-in-Norway/Cancer-?in-Norway-2006/. Accessed 1 December, 2008.
[51]  Barlow L, Westergren K, Holmberg L, Talback M (2008) The completeness of the Swedish Cancer Register – a sample survey for year 1998. Acta Oncol 1–7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133