全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2006 

Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-γ-Dependent Mechanism

DOI: 10.1371/journal.pmed.0030277

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Interleukin (IL)–32 is a newly described proinflammatory cytokine that seems likely to play a role in inflammation and host defense. Little is known about the regulation of IL-32 production by primary cells of the immune system. Methods and Findings In the present study, freshly obtained human peripheral blood mononuclear cells were stimulated with different Toll-like receptor (TLR) agonists, and gene expression and synthesis of IL-32 was determined. We demonstrate that the TLR4 agonist lipopolysaccharide induces moderate (4-fold) production of IL-32, whereas agonists of TLR2, TLR3, TLR5, or TLR9, each of which strongly induced tumor necrosis factor α and IL-6, did not stimulate IL-32 production. However, the greatest amount of IL-32 was induced by the mycobacteria Mycobacterium tuberculosis and M. bovis BCG (20-fold over unstimulated cells). IL-32-induced synthesis by either lipopolysaccharide or mycobacteria remains entirely cell-associated in monocytes; moreover, steady-state mRNA levels are present in unstimulated monocytes without translation into IL-32 protein, similar to other cytokines lacking a signal peptide. IL-32 production induced by M. tuberculosis is dependent on endogenous interferon-γ (IFNγ); endogenous IFNγ is, in turn, dependent on M. tuberculosis–induced IL-18 via caspase-1. Conclusions In conclusion, IL-32 is a cell-associated proinflammatory cytokine, which is specifically stimulated by mycobacteria through a caspase-1- and IL-18-dependent production of IFNγ.

References

[1]  Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: A cytokine and inducer of TNF-alpha. Immunity 22: 131–142.
[2]  Netea MG, Azam T, Ferwerda G, Girardin SE, Walsh M, et al. (2005) IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A 102: 16309–16314.
[3]  Ottenhoff TH, Verreck FAW, Hoeve MA, van de Vosse E (2005) Control of human host immunity to mycobacteria. Tuberculosis 85: 53–64.
[4]  Murray HW, Scavuzzo D, Jacobs JL, Kaplan MH, Libby DM, et al. (1987) In vitro and in vivo activation of human mononuclear phagocytes by interferon-g. J Immunol 138: 2457–2462.
[5]  Perrusia B, Kobayashi M, Rossi ME, Anegon I, Trinchieri G (1987) Immune interferon enhances functional properties of human granulocytes: Role of Fc receptors and effect of lymphotoxin, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor. J Immunol 138: 765–774.
[6]  Ottenhoff TH, Verreck FA, Lichtenauer-Kaligis EG, Hoeve MA, Sanal O, et al. (2002) Genetics, cytokines and human infectious disease: Lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet 32: 97–105.
[7]  Doffinger R, Dupuis S, Picard C, Fieschi C, Feinberg J, et al. (2001) Inherited disorders of IL-12- and IFNg-mediated immunity: A molecular genetics update. Mol Immunol 38: 903–909.
[8]  van de Vosse E, Hoeve MA, Ottenhoff TH (2004) Human genetics of intracellular infectious diseases: Molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis 4: 739–749.
[9]  Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, et al. (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci U S A 97: 1190–1195.
[10]  Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA (1998) Interleukin-18 enhances lipopolysaccharide-induced interferon-gamma production in human whole blood cultures. J Infect Dis 178: 1830–1834.
[11]  Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinum phenol chloroform extraction. Anal Biochem 162: 156–159.
[12]  Stuyt RJ, Netea MG, Kim SH, Novick D, Rubinstein M, et al. (2001) Differential roles of interleukin-18 (IL-18) and IL-12 for induction of gamma interferon by staphylococcal cell wall components and superantigens. Infect Immun 69: 5025–5030.
[13]  Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, et al. (1997) Activation of interferon-g inducing factor mediated by interleukin-1beta converting enzyme. Science 275: 206–209.
[14]  Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, et al. (1997) Caspase-1 processes IFN-g-inducing factor and regulates LPS-induced IFN-g production. Nature 386: 619–623.
[15]  Chedid L, Audibert F, Jolivet M (1986) Role of muramyl peptides for the enhancement of synthetic vaccines. Dev Biol Stand 63: 133–140.
[16]  Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K (1998) Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 10: 259–264.
[17]  Dinarello CA (1999) IL-18: A Th1-inducing, proinflammatory cytokine and a new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.
[18]  Schindler R, Clark BD, Dinarello CA (1990) Dissociation between interleukin-1b mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem 265: 10232–10237.
[19]  Schindler R, Gelfand JA, Dinarello CA (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: Translational signal provided by lipopolysaccharide or IL-1 itself. Blood 76: 1631–1638.
[20]  Kaspar RL, Gehrke L (1994) Peripheral blood mononuclear cells stimulated with C5a or lipopolysaccharide to synthesize equivalent levels of IL-1b mRNA show unequal IL-1b protein accumulation but similar polyribosome profiles. J Immunol 153: 277–286.
[21]  Andersson J, Bj?rk L, Dinarello CA, Towbin H, Andersson U (1992) Lipopolysaccharide induces human interleukin-1 receptor antagonist and interleukin-1 production in the same cell. Eur J Immunol 22: 2617–2623.
[22]  Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87: 2095–2147.
[23]  Ware CF (2005) Network communications: Lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23: 787–819.
[24]  Nakae S, Naruse-Nakajima C, Sudo K, Horai R, Asano M, et al. (2001) IL-1 alpha, but not IL-1 beta, is required for contact-allergen-specific T cell activation during the sensitization phase in contact hypersensitivity. Int Immunol 13: 1471–1478.
[25]  Saunders BM, Tran S, Ruls S, Sedgwick JD, Briscoe H, et al. (2005) Transmembrane TNF is sufficient to initiate cell migration and granuloma formation and provide acute, but not long-term, control of infection. J Immunol 174: 4852–4859.
[26]  Damon DH, D'Amore PA, Wagner JA (1990) Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C- and cAMP-independent mechanisms. J Cell Biol 110: 1333–1339.
[27]  Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, et al. (1999) Human Toll-like receptors mediate cellular activation by . J Immunol 163: 3920–3927.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133