全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2009 

Pralidoxime in Acute Organophosphorus Insecticide Poisoning—A Randomised Controlled Trial

DOI: 10.1371/journal.pmed.1000104

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Poisoning with organophosphorus (OP) insecticides is a major global public health problem, causing an estimated 200,000 deaths each year. Although the World Health Organization recommends use of pralidoxime, this antidote's effectiveness remains unclear. We aimed to determine whether the addition of pralidoxime chloride to atropine and supportive care offers benefit. Methods and Findings We performed a double-blind randomised placebo-controlled trial of pralidoxime chloride (2 g loading dose over 20 min, followed by a constant infusion of 0.5 g/h for up to 7 d) versus saline in patients with organophosphorus insecticide self-poisoning. Mortality was the primary outcome; secondary outcomes included intubation, duration of intubation, and time to death. We measured baseline markers of exposure and pharmacodynamic markers of response to aid interpretation of clinical outcomes. Two hundred thirty-five patients were randomised to receive pralidoxime (121) or saline placebo (114). Pralidoxime produced substantial and moderate red cell acetylcholinesterase reactivation in patients poisoned by diethyl and dimethyl compounds, respectively. Mortality was nonsignificantly higher in patients receiving pralidoxime: 30/121 (24.8%) receiving pralidoxime died, compared with 18/114 (15.8%) receiving placebo (adjusted hazard ratio [HR] 1.69, 95% confidence interval [CI] 0.88–3.26, p = 0.12). Incorporating the baseline amount of acetylcholinesterase already aged and plasma OP concentration into the analysis increased the HR for patients receiving pralidoxime compared to placebo, further decreasing the likelihood that pralidoxime is beneficial. The need for intubation was similar in both groups (pralidoxime 26/121 [21.5%], placebo 24/114 [21.1%], adjusted HR 1.27 [95% CI 0.71–2.29]). To reduce confounding due to ingestion of different insecticides, we further analysed patients with confirmed chlorpyrifos or dimethoate poisoning alone, finding no evidence of benefit. Conclusions Despite clear reactivation of red cell acetylcholinesterase in diethyl organophosphorus pesticide poisoned patients, we found no evidence that this regimen improves survival or reduces need for intubation in patients with organophosphorus insecticide poisoning. The reason for this failure to benefit patients was not apparent. Further studies of different dose regimens or different oximes are required. Trial Registration Controlled-trials.com ISRCTN55264358 Please see later in the article for Editors' Summary

References

[1]  Eddleston M (2000) Patterns and problems of deliberate self-poisoning in the developing world. Q J Med 93: 715–731.
[2]  Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7: 357.
[3]  Eddleston M, Buckley NA, Gunnell D, Dawson AH, Konradsen F (2006) Identification of strategies to prevent death after pesticide self-poisoning using a Haddon matrix. Inj Prev 12: 333–337.
[4]  Gunnell D, Fernando R, Hewagama M, Priyangika WDD, Konradsen F, et al. (2007) The impact of pesticide regulations on suicide in Sri Lanka. Int J Epidemiol 36: 1235–1242.
[5]  Food and Agriculture Organization of the United Nations (2002) International Code of Conduct on the Distribution and Use of Pesticides (Revised Version, adopted by the Hundred and Twenty-third Session of the FAO Council in November 2002). Rome: FAO.
[6]  Buckley NA, Karalliedde L, Dawson A, Senanayake N, Eddleston M (2004) Where is the evidence for the management of pesticide poisoning - is clinical toxicology fiddling while the developing world burns? J Toxicol Clin Toxicol 42: 113–116.
[7]  Lotti M (2001) Clinical toxicology of anticholinesterase agents in humans. In: Krieger RI, Doull J, editors. Handbook of pesticide toxicology. Volume 2. Agents. San Diego: Academic Press. pp. 1043–1085.
[8]  Clark RF (2006) Insecticides: organic phosphorus compounds and carbamates. In: Flomenbaum N, Goldfrank L, Hoffman RS, Howland MA, Lewin N, et al., editors. Goldfrank's Toxicologic Emergencies. New York: McGraw-Hill Professional. pp. 1497–1512.
[9]  Eddleston M (2008) The pathophysiology of organophosphorus pesticide self-poisoning is not so simple. Neth J Med 66: 146–148.
[10]  Wadia RS, Bhirud RH, Gulavani AV, Amin RB (1977) Neurological manifestations of three organophosphate poisons. Indian J Med Res 66: 460–468.
[11]  Eddleston M, Eyer P, Worek F, Mohamed F, Senarathna L, et al. (2005) Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet 366: 1452–1459.
[12]  Eddleston M, Mohamed F, Davies JOJ, Eyer P, Worek F, et al. (2006) Respiratory failure in acute organophosphorus pesticide self-poisoning. Q J Med 99: 513–522.
[13]  Heath AJW, Meredith T (1992) Atropine in the management of anticholinesterase poisoning. In: Ballantyne B, Marrs T, editors. Clinical and experimental toxicology of organophosphates and carbamates. Oxford: Butterworth Heinemann. pp. 543–554.
[14]  Eyer P (2003) The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev 22: 165–190.
[15]  Eddleston M, Dawson A, Karalliedde L, Dissanayake W, Hittarage A, et al. (2004) Early management after self-poisoning with an organophosphorus or carbamate pesticide - a treatment protocol for junior doctors. Crit Care 8: R391–R397.
[16]  Freeman G, Epstein MA (1955) Therapeutic factors in survival after lethal cholinesterase inhibition by phosphorus pesticides. N Engl J Med 253: 266–271.
[17]  Eddleston M, Szinicz L, Eyer P, Buckley N (2002) Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. Q J Med 95: 275–283.
[18]  Peter JV, Moran JL, Graham P (2006) Oxime therapy and outcomes in human organophosphate poisoning: an evaluation using meta-analytic techniques. Crit Care Med 34: 502–510.
[19]  Abdollahi M, Jafari A, Jalali N, Balali-Mood M, Kebriaeezadeh A, et al. (1995) A new approach to the efficacy of oximes in the management of acute organophosphate poisoning. Iranian J Med Sci 20: 105–109.
[20]  de Silva HJ, Wijewickrema R, Senanayake N (1992) Does pralidoxime affect outcome of management in acute organophosphate poisoning? Lancet 339: 1136–1138.
[21]  Peter JV, Cherian AM (2000) Organic insecticides. Anaesth Intens Care 28: 11–21.
[22]  Rahimi R, Nikfar S, Abdollahi M (2006) Increased morbidity and mortality in acute human organophosphate-poisoned patients treated by oximes: a meta-analysis of clinical trials. Hum Exp Toxicol 25: 157–162.
[23]  Johnson MK, Vale JA, Marrs TC, Meredith TJ (1992) Pralidoxime for organophosphorus poisoning [letter]. Lancet 340: 64.
[24]  Johnson MK, Jacobsen D, Meredith TJ, Eyer P, Heath AJW, et al. (2000) Evaluation of antidotes for poisoning by organophosphorus pesticides. Emergency Medicine 12: 22–37.
[25]  Eddleston M, Juszczak E, Buckley NA, Senarathna L, Mohamed F, et al. (2008) Multiple-dose activated charcoal in acute self-poisoning: a randomised controlled trial. Lancet 371: 579–586.
[26]  Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Medical management of acute organophosphorus pesticide poisoning. Lancet 371: 597–607.
[27]  Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288: 73–90.
[28]  Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
[29]  Pawar KS, Bhoite RR, Pillay CP, Chavan SC, Malshikare DS, et al. (2006) Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet 368: 2136–2141.
[30]  World Health Organization (2005) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2004. Geneva: WHO.
[31]  Davies JOJ, Eddleston M, Buckley NA (2008) Predicting outcome in organophosphorus poisoning with a poison severity score or Glasgow Coma Scale. Q J Med 101: 371–379.
[32]  Thiermann H, Szinicz L, Eyer P, Zilker T, Worek F (2005) Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning. Chem Biol Interact 157–8: 345–347.
[33]  Medicis JJ, Stork CM, Howland MA, Hoffman RS, Goldfrank LR (1996) Pharmacokinetics following a loading plus a continuous infusion of pralidoxime compared with the traditional short infusion regimen in human volunteers. Clin Toxicol 34: 289–295.
[34]  Scott RJ (1986) Repeated asystole following PAM in organophosphate poisoning. Anaesth Intensive Care 14: 458–460.
[35]  Johnson S, Peter JV, Thomas K, Jeyaseelan L, Cherian AM (1996) Evaluation of two treatment regimens of pralidoxime (1gm single bolus dose vs 12gm infusion) in the management of organophosphorus poisoning. J Assoc Physicians India 44: 529–531.
[36]  Cherian AM, Peter JV, Samuel J, Jaydevan R, Peter S, et al. (1997) Effectiveness of P2AM (PAM -pralidoxime) in the treatment of organophosphrus poisoning. A randomised, double blind placebo controlled trial. J Assoc Physicians India 45: 22–24.
[37]  Eyer P, Buckley NA (2006) Pralidoxime for organophosphate poisoning. Lancet 368: 2110–2111.
[38]  Hmouda H, ben Salem C, Bouraoui K (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371: 2169–2170.
[39]  Worek F, Reiter G, Eyer P, Szinicz L (2002) Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol 76: 523–529.
[40]  Petroianu GA, Nurulain SM, Nagelkerke N, Al Sultan MA, Kuca K, et al. (2006) Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: survival in rats exposed to the organophosphate paraoxon. J Appl Toxicol 26: 262–268.
[41]  Namba T, Hiraki K (1958) PAM (pyridine-2-aldoxime methiodide) therapy of alkylphosphate poisoning. JAMA 166: 1834–1839.
[42]  Sidell FR, Groff WA, Kaminskis A (1972) Toxogonin and pralidoxime: kinetic comparison after intravenous administration to man. J Pharm Sci 61: 1765–1769.
[43]  Eyer P, Eddleston M, Thiermann H, Worek F, Buckley NA (2008) Are we using the right dose? – A tale of mole and gram. Brit J Clin Pharmacol 66: 451–452.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133