全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2011 

Pervasive Sign Epistasis between Conjugative Plasmids and Drug-Resistance Chromosomal Mutations

DOI: 10.1371/journal.pgen.1002181

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multidrug-resistant bacteria arise mostly by the accumulation of plasmids and chromosomal mutations. Typically, these resistant determinants are costly to the bacterial cell. Yet, recently, it has been found that, in Escherichia coli bacterial cells, a mutation conferring resistance to an antibiotic can be advantageous to the bacterial cell if another antibiotic-resistance mutation is already present, a phenomenon called sign epistasis. Here we study the interaction between antibiotic-resistance chromosomal mutations and conjugative (i.e., self-transmissible) plasmids and find many cases of sign epistasis (40%)—including one of reciprocal sign epistasis where the strain carrying both resistance determinants is fitter than the two strains carrying only one of the determinants. This implies that the acquisition of an additional resistance plasmid or of a resistance mutation often increases the fitness of a bacterial strain already resistant to antibiotics. We further show that there is an overall antagonistic interaction between mutations and plasmids (52%). These results further complicate expectations of resistance reversal by interdiction of antibiotic use.

References

[1]  Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, et al. (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33: 44–65.
[2]  Bertino JS (2009) Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol 3: 507–521.
[3]  Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2: 489–493.
[4]  Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9: 461–465.
[5]  Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1: 265–270.
[6]  Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI (2003) Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 47: 2850–2858.
[7]  Seppala H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, et al. (1997) The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med 337: 441–446.
[8]  Enne VI, Livermore DM, Stephens P, Hall LM (2001) Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357: 1325–1328.
[9]  Schrag SJ, Perrot V (1996) Reducing antibiotic resistance. Nature 381: 120–121.
[10]  Schrag SJ, Perrot V, Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc B 264: 1287–1291.
[11]  Maisnier-Patin S, Berg OG, Liljas L, Andersson DI (2002) Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 46: 355–366.
[12]  Bjorkman J, Nagaev I, Berg OG, Hughes D, Andersson DI (2000) Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 1479–1482.
[13]  Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, et al. (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312: 1944–1946.
[14]  Trzcinski K, Thompson CM, Gilbey AM, Dowson CG, Lipsitch M (2006) Incremental increase in fitness cost with increased beta-lactam resistance in pneumococci evaluated by competition in an infant rat nasal colonization model. J Infect Dis 193: 1296–1303.
[15]  Orio AGA, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory Evolution of pbp Mutations Restores the Fitness Cost Imposed by beta-Lactam Resistance in Streptococcus pneumoniae. PLoS Path 7: e1002000. doi:10.1371/journal.ppat.1002000.
[16]  Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, et al. (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103: 711–721.
[17]  Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, et al. (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37: 283–328.
[18]  Cohen O, Pupko T (2009) Inference and Characterization of Horizontally Transferred Gene Families using Stochastic Mapping. Mol Biol Evol 27: 703–713.
[19]  Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162: 1525–1532.
[20]  Amábile-Cuevas CF, Chicurel ME (1992) Bacterial Plasmids and Gene Flux. Cell 70: 189–199.
[21]  Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153: Suppl 1S347–357.
[22]  Bouma JE, Lenski RE (1988) Evolution of a Bacteria Plasmid Association. Nature 335: 351–352.
[23]  McDermott PJ, Gowland P, Gowland PC (1993) Adaptation of Escherichia coli growth rates to the presence of pBR322. Lett Appl Microbiol 17: 139–143.
[24]  Smith MA, Bidochka MJ (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44: 351–355.
[25]  Dahlberg C, Chao L (2003) Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165: 1641–1649.
[26]  Dionisio F, Conceicao IC, Marques AC, Fernandes L, Gordo I (2005) The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 1: 250–252.
[27]  Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, et al. (2009) Positive Epistasis Drives the Acquisition of Multidrug Resistance. PLoS Genet 5: e1000578. doi:10.1371/journal.pgen.1000578.
[28]  Phillips PC (2008) Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9: 855–867.
[29]  Silander OK, Tenaillon O, Chao L (2007) Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 5: e94. 10.1371/journal.pbio.0050094.
[30]  Parera M, Fernandez G, Clotet B, Martinez MA (2007) HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions. Mol Biol Evol 24: 382–387.
[31]  Burch CL, Chao L (2004) Epistasis and its relationship to canalization in the RNA virus phi 6. Genetics 167: 559–567.
[32]  Maisnier-Patin S, Roth JR, Fredriksson A, Nystrom T, Berg OG, et al. (2005) Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37: 1376–1379.
[33]  Jasnos L, Korona R (2007) Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet 39: 550–554.
[34]  van Opijnen T, Boerlijst MC, Berkhout B (2006) Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J Virol 80: 6678–6685.
[35]  Elena SF (1999) Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J Mol Evol 49: 703–707.
[36]  Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98: 6895–6900.
[37]  Sanjuan R, Moya A, Elena SF (2004) The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci U S A 101: 15376–15379.
[38]  Elena SF, Lenski RE (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395–398.
[39]  Wilke CO, Adami C (2001) Interaction between directional epistasis and average mutational effects. Proc Biol Sci 268: 1469–1474.
[40]  MacLean RC (2010) Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. J Evol Biol 23: 488–493.
[41]  Carneiro M, Hartl DL (2010) Adaptive landscapes and protein evolution. Proc Natl Acad Sci U S A 107: Suppl 11747–1751.
[42]  Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, et al. (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 490–516.
[43]  San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, et al. (2009) Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 53: 3399–3404.
[44]  Ward H, Perron GG, Maclean RC (2009) The cost of multiple drug resistance in Pseudomonas aeruginosa. J Evol Biol 22: 997–1003.
[45]  Rozen DE, Mcgee L, Levin BR, Klugman KP (2007) Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 51: 412–416.
[46]  Weinreich DM, Watson RA, Chao L (2005) Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59: 1165–1174.
[47]  Harr B, Schlotterer C (2006) Gene expression analysis indicates extensive genotype-specific crosstalk between the conjugative F-plasmid and the E. coli chromosome. BMC Microbiol 6: 80.
[48]  Fisher RF, Yanofsky C (1983) Mutations of the Beta-Subunit of Rna-Polymerase Alter Both Transcription Pausing and Transcription Termination in the Trp Operon Leader Region Invitro. J Biol Chem 258: 8146–8150.
[49]  Drlica K, Franco RJ, Steck TR (1988) Rifampin and Rpob Mutations Can Alter DNA Supercoiling in Escherichia-Coli. J Bacteriol 170: 4983–4985.
[50]  Jin DJ, Gross CA (1989) Characterization of the Pleiotropic Phenotypes of Rifampin-Resistant Rpob Mutants of Escherichia-Coli. J Bacteriol 171: 5229–5231.
[51]  Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of Ribosomal Protein-S12 in Peptide Chain Elongation - Analysis of Pleiotropic, Streptomycin-Resistant Mutants of Escherichia-Coli. J Bacteriol 129: 1320–1329.
[52]  Jeong KS, Xie Y, Hiasa H, Khodursky AB (2006) Analysis of pleiotropic transcriptional profiles: A case study of DNA gyrase inhibition. PLoS Genet 2: e152. doi:10.1371/journal.pgen.0020152.
[53]  Schmitt CK, Kemp P, Molineux IJ (1995) Streptomycin- and Rifampin-Resistant Mutants of Escherichia-Coli Perturb F-Exclusion of Bacteriophage-T7 by Affecting Synthesis of the F-Plasmid Protein Pifa. J Bacteriol 177: 1589–1594.
[54]  Ozawa Y, De Boever EH, Clewell DB (2005) Enterococcus faecalis sex pheromone plasmid pAM373: Analyses of TraA and evidence for its interaction with RpoB. Plasmid 54: 57–69.
[55]  Wolfson JS, Hooper DC, Swartz MN, Mchugh GL (1982) Antagonism of the B-Subunit of DNA Gyrase Eliminates Plasmid-Pbr322 and Plasmid-Pmg110 from Escherichia-Coli. J Bacteriol 152: 338–344.
[56]  He X, Qian W, Wang Z, Li Y, Zhang J (2010) Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 42: 272–276.
[57]  Norman A, Hansen LH, Sorensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364: 2275–2289.
[58]  Williams JJ, Hergenrother PJ (2008) Exposing plasmids as the Achilles' heel of drug-resistant bacteria. Curr Opin Chem Biol 12: 389–399.
[59]  Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term Experimental Evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138: 1315 - 1341:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133