[1] | Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, et al. (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33: 44–65.
|
[2] | Bertino JS (2009) Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin Ophthalmol 3: 507–521.
|
[3] | Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2: 489–493.
|
[4] | Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9: 461–465.
|
[5] | Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1: 265–270.
|
[6] | Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI (2003) Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 47: 2850–2858.
|
[7] | Seppala H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, et al. (1997) The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med 337: 441–446.
|
[8] | Enne VI, Livermore DM, Stephens P, Hall LM (2001) Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357: 1325–1328.
|
[9] | Schrag SJ, Perrot V (1996) Reducing antibiotic resistance. Nature 381: 120–121.
|
[10] | Schrag SJ, Perrot V, Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc B 264: 1287–1291.
|
[11] | Maisnier-Patin S, Berg OG, Liljas L, Andersson DI (2002) Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 46: 355–366.
|
[12] | Bjorkman J, Nagaev I, Berg OG, Hughes D, Andersson DI (2000) Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 1479–1482.
|
[13] | Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, et al. (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312: 1944–1946.
|
[14] | Trzcinski K, Thompson CM, Gilbey AM, Dowson CG, Lipsitch M (2006) Incremental increase in fitness cost with increased beta-lactam resistance in pneumococci evaluated by competition in an infant rat nasal colonization model. J Infect Dis 193: 1296–1303.
|
[15] | Orio AGA, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory Evolution of pbp Mutations Restores the Fitness Cost Imposed by beta-Lactam Resistance in Streptococcus pneumoniae. PLoS Path 7: e1002000. doi:10.1371/journal.ppat.1002000.
|
[16] | Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, et al. (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103: 711–721.
|
[17] | Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, et al. (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37: 283–328.
|
[18] | Cohen O, Pupko T (2009) Inference and Characterization of Horizontally Transferred Gene Families using Stochastic Mapping. Mol Biol Evol 27: 703–713.
|
[19] | Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162: 1525–1532.
|
[20] | Amábile-Cuevas CF, Chicurel ME (1992) Bacterial Plasmids and Gene Flux. Cell 70: 189–199.
|
[21] | Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153: Suppl 1S347–357.
|
[22] | Bouma JE, Lenski RE (1988) Evolution of a Bacteria Plasmid Association. Nature 335: 351–352.
|
[23] | McDermott PJ, Gowland P, Gowland PC (1993) Adaptation of Escherichia coli growth rates to the presence of pBR322. Lett Appl Microbiol 17: 139–143.
|
[24] | Smith MA, Bidochka MJ (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44: 351–355.
|
[25] | Dahlberg C, Chao L (2003) Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165: 1641–1649.
|
[26] | Dionisio F, Conceicao IC, Marques AC, Fernandes L, Gordo I (2005) The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 1: 250–252.
|
[27] | Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, et al. (2009) Positive Epistasis Drives the Acquisition of Multidrug Resistance. PLoS Genet 5: e1000578. doi:10.1371/journal.pgen.1000578.
|
[28] | Phillips PC (2008) Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9: 855–867.
|
[29] | Silander OK, Tenaillon O, Chao L (2007) Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 5: e94. 10.1371/journal.pbio.0050094.
|
[30] | Parera M, Fernandez G, Clotet B, Martinez MA (2007) HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions. Mol Biol Evol 24: 382–387.
|
[31] | Burch CL, Chao L (2004) Epistasis and its relationship to canalization in the RNA virus phi 6. Genetics 167: 559–567.
|
[32] | Maisnier-Patin S, Roth JR, Fredriksson A, Nystrom T, Berg OG, et al. (2005) Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37: 1376–1379.
|
[33] | Jasnos L, Korona R (2007) Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet 39: 550–554.
|
[34] | van Opijnen T, Boerlijst MC, Berkhout B (2006) Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J Virol 80: 6678–6685.
|
[35] | Elena SF (1999) Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J Mol Evol 49: 703–707.
|
[36] | Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98: 6895–6900.
|
[37] | Sanjuan R, Moya A, Elena SF (2004) The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci U S A 101: 15376–15379.
|
[38] | Elena SF, Lenski RE (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395–398.
|
[39] | Wilke CO, Adami C (2001) Interaction between directional epistasis and average mutational effects. Proc Biol Sci 268: 1469–1474.
|
[40] | MacLean RC (2010) Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. J Evol Biol 23: 488–493.
|
[41] | Carneiro M, Hartl DL (2010) Adaptive landscapes and protein evolution. Proc Natl Acad Sci U S A 107: Suppl 11747–1751.
|
[42] | Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, et al. (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 490–516.
|
[43] | San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, et al. (2009) Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 53: 3399–3404.
|
[44] | Ward H, Perron GG, Maclean RC (2009) The cost of multiple drug resistance in Pseudomonas aeruginosa. J Evol Biol 22: 997–1003.
|
[45] | Rozen DE, Mcgee L, Levin BR, Klugman KP (2007) Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 51: 412–416.
|
[46] | Weinreich DM, Watson RA, Chao L (2005) Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59: 1165–1174.
|
[47] | Harr B, Schlotterer C (2006) Gene expression analysis indicates extensive genotype-specific crosstalk between the conjugative F-plasmid and the E. coli chromosome. BMC Microbiol 6: 80.
|
[48] | Fisher RF, Yanofsky C (1983) Mutations of the Beta-Subunit of Rna-Polymerase Alter Both Transcription Pausing and Transcription Termination in the Trp Operon Leader Region Invitro. J Biol Chem 258: 8146–8150.
|
[49] | Drlica K, Franco RJ, Steck TR (1988) Rifampin and Rpob Mutations Can Alter DNA Supercoiling in Escherichia-Coli. J Bacteriol 170: 4983–4985.
|
[50] | Jin DJ, Gross CA (1989) Characterization of the Pleiotropic Phenotypes of Rifampin-Resistant Rpob Mutants of Escherichia-Coli. J Bacteriol 171: 5229–5231.
|
[51] | Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of Ribosomal Protein-S12 in Peptide Chain Elongation - Analysis of Pleiotropic, Streptomycin-Resistant Mutants of Escherichia-Coli. J Bacteriol 129: 1320–1329.
|
[52] | Jeong KS, Xie Y, Hiasa H, Khodursky AB (2006) Analysis of pleiotropic transcriptional profiles: A case study of DNA gyrase inhibition. PLoS Genet 2: e152. doi:10.1371/journal.pgen.0020152.
|
[53] | Schmitt CK, Kemp P, Molineux IJ (1995) Streptomycin- and Rifampin-Resistant Mutants of Escherichia-Coli Perturb F-Exclusion of Bacteriophage-T7 by Affecting Synthesis of the F-Plasmid Protein Pifa. J Bacteriol 177: 1589–1594.
|
[54] | Ozawa Y, De Boever EH, Clewell DB (2005) Enterococcus faecalis sex pheromone plasmid pAM373: Analyses of TraA and evidence for its interaction with RpoB. Plasmid 54: 57–69.
|
[55] | Wolfson JS, Hooper DC, Swartz MN, Mchugh GL (1982) Antagonism of the B-Subunit of DNA Gyrase Eliminates Plasmid-Pbr322 and Plasmid-Pmg110 from Escherichia-Coli. J Bacteriol 152: 338–344.
|
[56] | He X, Qian W, Wang Z, Li Y, Zhang J (2010) Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 42: 272–276.
|
[57] | Norman A, Hansen LH, Sorensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364: 2275–2289.
|
[58] | Williams JJ, Hergenrother PJ (2008) Exposing plasmids as the Achilles' heel of drug-resistant bacteria. Curr Opin Chem Biol 12: 389–399.
|
[59] | Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term Experimental Evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138: 1315 - 1341:
|