Background Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective. Methodology Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime – modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease. Results Heterologous prime – boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses. Conclusions Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania (Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.
References
[1]
Khamesipour A, Dowlati Y, Asilian A, Hashemi-Fesharki R, Javadi A, et al. (2005) Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23: 3642–3648. doi: 10.1016/j.vaccine.2005.02.015
[2]
Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14: 229–243. doi: 10.1128/CMR.14.2.229-243.2001
[3]
Noazin S, Khamesipour A, Moulton LH, Tanner M, Nasseri K, et al. (2009) Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine 27: 4747–4753. doi: 10.1016/j.vaccine.2009.05.084
[4]
Noazin S, Modabber F, Khamesipour A, Smith PG, Moulton LH, et al. (2008) First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine 26: 6759–6767. doi: 10.1016/j.vaccine.2008.09.085
[5]
Okwor I, Uzonna J (2009) Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum Vaccin 5: 291–301. doi: 10.4161/hv.5.5.7607
[6]
Launois P, Tacchini-Cottier F, Kieny MP (2008) Cutaneous leishmaniasis: progress towards a vaccine. Expert Rev Vaccines 7: 1277–1287. doi: 10.1586/14760584.7.8.1277
Smith DF, Peacock CS, Cruz AK (2007) Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 37: 1173–1186. doi: 10.1016/j.ijpara.2007.05.015
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, et al. (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39: 839–847. doi: 10.1038/ng2053
[11]
Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, et al. (2005) Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73: 7853–7859. doi: 10.1128/IAI.73.12.7853-7859.2005
[12]
Gomes-Silva A, de Cassia Bittar R, Dos Santos Nogueira R, Amato VS, da Silva Mattos M, et al. (2007) Can interferon-gamma and interleukin-10 balance be associated with severity of human Leishmania (Viannia) braziliensis infection? Clin Exp Immunol 149: 440–444. doi: 10.1111/j.1365-2249.2007.03436.x
[13]
Carvalho LP, Passos S, Bacellar O, Lessa M, Almeida RP, et al. (2007) Differential immune regulation of activated T cells between cutaneous and mucosal leishmaniasis as a model for pathogenesis. Parasite Immunol 29: 251–258. doi: 10.1111/j.1365-3024.2007.00940.x
[14]
Travi BL, Osorio Y, Saravia NG (1996) The inflammatory response promotes cutaneous metastasis in hamsters infected with Leishmania (Viannia) panamensis. J Parasitol 82: 454–457. doi: 10.2307/3284085
[15]
Follador I, Araujo C, Bacellar O, Araujo CB, Carvalho LP, et al. (2002) Epidemiologic and immunologic findings for the subclinical form of Leishmania braziliensis infection. Clin Infect Dis 34: E54–58. doi: 10.1086/340261
[16]
Vargas-Inchaustegui DA, Xin L, Soong L (2008) Leishmania braziliensis infection induces dendritic cell activation, ISG15 transcription, and the generation of protective immune responses. J Immunol 180: 7537–7545.
[17]
Bosque F, Saravia NG, Valderrama L, Milon G (2000) Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand J Immunol 51: 533–541. doi: 10.1046/j.1365-3083.2000.00724.x
[18]
Bourreau E, Prevot G, Pradinaud R, Launois P (2001) Interleukin (IL)-13 is the predominant Th2 cytokine in localized cutaneous leishmaniasis lesions and renders specific CD4+ T cells unresponsive to IL-12. J Infect Dis 183: 953–959. doi: 10.1086/319249
[19]
Salay G, Dorta ML, Santos NM, Mortara RA, Brodskyn C, et al. (2007) Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World. Clin Vaccine Immunol 14: 1173–1181. doi: 10.1128/CVI.00060-07
[20]
Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, et al. (2009) Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183: 1813–1820. doi: 10.4049/jimmunol.0900276
[21]
Tonui WK, Titus RG (2007) Cross-protection against Leishmania donovani but not L. braziliensis caused by vaccination with L. major soluble promastigote exogenous antigens in BALB/c mice. Am J Trop Med Hyg 76: 579–584.
[22]
Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, et al. (2010) Murine model of chronic L. (Viannia) panamensis infection: Role of IL-13 in disease. Eur J Immunol 40: 2816–29. doi: 10.1002/eji.201040384
[23]
Liu S, Tobias R, McClure S, Styba G, Shi Q, et al. (1997) Removal of endotoxin from recombinant protein preparations. Clin Biochem 30: 455–463. doi: 10.1016/S0009-9120(97)00049-0
[24]
Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM (2005) IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol 175: 2517–2524.
[25]
Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM (2007) Heterologous priming-boosting with DNA and modified vaccinia virus Ankara expressing tryparedoxin peroxidase promotes long-term memory against Leishmania major in susceptible BALB/c Mice. Infect Immun 75: 852–860. doi: 10.1128/IAI.01490-06
[26]
Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, Munstermann L, et al. (2003) Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun 71: 401–410. doi: 10.1128/IAI.71.1.401-410.2003
Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, et al. (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13: 843–850. doi: 10.1038/nm1592
[29]
Hovav AH, Panas MW, Osuna CE, Cayabyab MJ, Autissier P, et al. (2007) The impact of a boosting immunogen on the differentiation of secondary memory CD8+ T cells. J Virol 81: 12793–12802. doi: 10.1128/JVI.01519-07
[30]
Lu S (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21: 346–351. doi: 10.1016/j.coi.2009.05.016
[31]
Leroux-Roels I, Roman F, Forgus S, Maes C, De Boever F, et al. (2010) Priming with AS03 A-adjuvanted H5N1 influenza vaccine improves the kinetics, magnitude and durability of the immune response after a heterologous booster vaccination: an open non-randomised extension of a double-blind randomised primary study. Vaccine 28: 849–857. doi: 10.1016/j.vaccine.2009.10.017
[32]
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, et al. (2008) Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 38: 706–719. doi: 10.1002/eji.200737660
[33]
Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, et al. (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol 161: 3271–3281.
[34]
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745. doi: 10.1038/35047123
[35]
Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, et al. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933–940. doi: 10.1093/intimm/13.7.933
[36]
Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689–10692. doi: 10.1074/jbc.274.16.10689
[37]
Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, et al. (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–739. doi: 10.1126/science.285.5428.736
[38]
Salhi A, Rodrigues V Jr, Santoro F, Dessein H, Romano A, et al. (2008) Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J Immunol 180: 6139–6148.
[39]
Moore SM, Wilkerson MJ, Davis RD, Wyatt CR, Briggs DJ (2006) Detection of cellular immunity to rabies antigens in human vaccinees. J Clin Immunol 26: 533–545. doi: 10.1007/s10875-006-9044-0
[40]
Zaunders JJ, Munier ML, Seddiki N, Pett S, Ip S, et al. (2009) High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J Immunol 183: 2827–2836. doi: 10.4049/jimmunol.0803548
[41]
Zhao HP, Sun JF, Li N, Sun Y, Xia ZH, et al. (2009) Assessment of the cell-mediated immunity induced by alphavirus replicon-vectored DNA vaccines against classical swine fever in a mouse model. Vet Immunol Immunopathol 129: 57–65. doi: 10.1016/j.vetimm.2008.12.011
[42]
Dondji B, Perez-Jimenez E, Goldsmith-Pestana K, Esteban M, McMahon-Pratt D (2005) Heterologous prime-boost vaccination with the LACK antigen protects against murine visceral leishmaniasis. Infect Immun 73: 5286–5289. doi: 10.1128/IAI.73.8.5286-5289.2005
[43]
Melby PC, Yang J, Zhao W, Perez LE, Cheng J (2001) Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 69: 4719–4725. doi: 10.1128/IAI.69.8.4719-4725.2001
[44]
Hirata N, Yanagawa Y, Ebihara T, Seya T, Uematsu S, et al. (2008) Selective synergy in anti-inflammatory cytokine production upon cooperated signaling via TLR4 and TLR2 in murine conventional dendritic cells. Mol Immunol 45: 2734–2742. doi: 10.1016/j.molimm.2008.02.010
[45]
Patel M, Xu D, Kewin P, Choo-Kang B, McSharry C, et al. (2005) TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. J Immunol 174: 7558–7563.
[46]
Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, et al. (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199: 9–26. doi: 10.1111/j.0105-2896.2004.00142.x
[47]
Duraisingham SS, Hornig J, Gotch F, Patterson S (2009) TLR-stimulated CD34 stem cell-derived human skin-like and monocyte-derived dendritic cells fail to induce Th17 polarization of naive T cells but do stimulate Th1 and Th17 memory responses. J Immunol 183: 2242–2251. doi: 10.4049/jimmunol.0900474
[48]
Bedoui S, Davey GM, Lew AM, Heath WR (2009) Equivalent stimulation of naive and memory CD8 T cells by DNA vaccination: a dendritic cell-dependent process. Immunol Cell Biol 87: 255–259. doi: 10.1038/icb.2008.105
[49]
Montoya CJ, Jie HB, Al-Harthi L, Mulder C, Patino PJ, et al. (2006) Activation of plasmacytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J Immunol 177: 1028–1039.
[50]
Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol.
[51]
Lee KS, Scanga CA, Bachelder EM, Chen Q, Snapper CM (2007) TLR2 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Streptococcus pneumoniae. Cell Immunol 245: 103–110. doi: 10.1016/j.cellimm.2007.04.003
[52]
Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18: 927–974. doi: 10.1146/annurev.immunol.18.1.927
[53]
Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, et al. (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 177: 3515–3519.
[54]
Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, et al. (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202: 1715–1724. doi: 10.1084/jem.20051782
[55]
Appledorn DM, Patial S, McBride A, Godbehere S, Van Rooijen N, et al. (2008) Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J Immunol 181: 2134–2144.
[56]
Levy JA (2009) The unexpected pleiotropic activities of RANTES. J Immunol 182: 3945–3946. doi: 10.4049/jimmunol.0990015
[57]
Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, et al. (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116: 485–494. doi: 10.1172/JCI25439
[58]
Liu G, Zhao Y (2007) Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 122: 149–156. doi: 10.1111/j.1365-2567.2007.02651.x
[59]
Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103: 7048–7053. doi: 10.1073/pnas.0601554103
[60]
Ruiz JH, Becker I (2007) CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol 29: 671–678. doi: 10.1111/j.1365-3024.2007.00991.x
[61]
Coutinho SG, Da-Cruz AM, Bertho AL, Santiago MA, De-Luca P (1998) Immunologic patterns associated with cure in human American cutaneous leishmaniasis. Braz J Med Biol Res 31: 139–142. doi: 10.1590/S0100-879X1998000100019
[62]
Da-Cruz AM, Bertho AL, Oliveira-Neto MP, Coutinho SG (2005) Flow cytometric analysis of cellular infiltrate from American tegumentary leishmaniasis lesions. Br J Dermatol 153: 537–543. doi: 10.1111/j.1365-2133.2005.06647.x
[63]
Faria DR, Souza PE, Duraes FV, Carvalho EM, Gollob KJ, et al. (2009) Recruitment of CD8(+) T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis. Parasite Immunol 31: 432–439. doi: 10.1111/j.1365-3024.2009.01125.x
[64]
Tuon FF, Gomes-Silva A, Da-Cruz AM, Duarte MI, Neto VA, et al. (2008) Local immunological factors associated with recurrence of mucosal leishmaniasis. Clin Immunol 128: 442–446. doi: 10.1016/j.clim.2008.05.007
[65]
Joosten SA, Ottenhoff TH (2008) Human CD4 and CD8 regulatory T cells in infectious diseases and vaccination. Hum Immunol 69: 760–770. doi: 10.1016/j.humimm.2008.07.017
[66]
Kelso A, Costelloe EO, Johnson BJ, Groves P, Buttigieg K, et al. (2002) The genes for perforin, granzymes A-C and IFN-gamma are differentially expressed in single CD8(+) T cells during primary activation. Int Immunol 14: 605–613. doi: 10.1093/intimm/dxf028
[67]
Bangham CR (2009) CTL quality and the control of human retroviral infections. Eur J Immunol 39: 1700–1712. doi: 10.1002/eji.200939451
[68]
Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, et al. (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 186: 1137–1147. doi: 10.1084/jem.186.7.1137
[69]
Herath S, Kropf P, Muller I (2003) Cross-talk between CD8(+) and CD4(+) T cells in experimental cutaneous leishmaniasis: CD8(+) T cells are required for optimal IFN-gamma production by CD4(+) T cells. Parasite Immunol 25: 559–567. doi: 10.1111/j.0141-9838.2004.00668.x
[70]
Gurunathan S, Stobie L, Prussin C, Sacks DL, Glaichenhaus N, et al. (2000) Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T cells. J Immunol 165: 915–924.
[71]
Colmenares M, Kima PE, Samoff E, Soong L, McMahon-Pratt D (2003) Perforin and gamma interferon are critical CD8+ T-cell-mediated responses in vaccine-induced immunity against Leishmania amazonensis infection. Infect Immun 71: 3172–3182. doi: 10.1128/IAI.71.6.3172-3182.2003
[72]
Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YA, et al. (2002) Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect Immun 70: 2828–2836. doi: 10.1128/IAI.70.6.2828-2836.2002
[73]
Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, et al. (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123: 842–852. doi: 10.1242/jcs.056465
[74]
Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, et al. (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9: R35. doi: 10.1186/gb-2008-9-2-r35
[75]
Defoort JP, Nardelli B, Huang W, Ho DD, Tam JP (1992) Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc Natl Acad Sci U S A 89: 3879–3883. doi: 10.1073/pnas.89.9.3879
[76]
Babu JS, Nair S, Kanda P, Rouse BT (1995) Priming for virus-specific CD8+ but not CD4+ cytotoxic T lymphocytes with synthetic lipopeptide is influenced by acylation units and liposome encapsulation. Vaccine 13: 1669–1676. doi: 10.1016/0264-410X(95)00120-P
[77]
Deres K, Schild H, Wiesmuller KH, Jung G, Rammensee HG (1989) In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342: 561–564. doi: 10.1038/342561a0
[78]
Farrand KJ, Dickgreber N, Stoitzner P, Ronchese F, Petersen TR, et al. (2009) Langerin+ CD8alpha+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J Immunol 183: 7732–7742. doi: 10.4049/jimmunol.0902707
[79]
Cottalorda A, Verschelde C, Marcais A, Tomkowiak M, Musette P, et al. (2006) TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol 36: 1684–1693. doi: 10.1002/eji.200636181
[80]
Peiser M, Koeck J, Kirschning CJ, Wittig B, Wanner R (2008) Human Langerhans cells selectively activated via Toll-like receptor 2 agonists acquire migratory and CD4+T cell stimulatory capacity. J Leukoc Biol 83: 1118–1127. doi: 10.1189/jlb.0807567
[81]
Zanoni I, Granucci F (2010) Regulation of antigen uptake, migration, and lifespan of dendritic cell by Toll-like receptors. J Mol Med 88: 873–880. doi: 10.1007/s00109-010-0638-x
[82]
Cohen IR, Quintana FJ, Mimran A (2004) Tregs in T cell vaccination: exploring the regulation of regulation. J Clin Invest 114: 1227–1232. doi: 10.1172/JCI23396
[83]
Thomas MJ, Noble A, Sawicka E, Askenase PW, Kemeny DM (2002) CD8 T cells inhibit IgE via dendritic cell IL-12 induction that promotes Th1 T cell counter-regulation. J Immunol 168: 216–223.
[84]
Wells JW, Choy K, Lloyd CM, Noble A (2009) Suppression of allergic airway inflammation and IgE responses by a class I restricted allergen peptide vaccine. Mucosal Immunol 2: 54–62. doi: 10.1038/mi.2008.69