全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

DOI: 10.1371/journal.pntd.0001243

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated “safe sites” contribute to overall impact. Methods Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated against two material types (cotton and polyester) at various dark:light surface area coverage (SAC) ratio and contrast configuration (horizontal and vertical) under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. Results Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or “safe sites”) in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. Conclusions/Significance When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas) following contact with the treated material. Instead, they become agitated, using increased flight as a proxy indicator. It is this contact irritant response that may elicit escape behavior from a treated space and is a focus of exploitation for reducing man-vector contact inside homes.

References

[1]  Kroeger A, Nathan MB (2006) Dengue: setting the global research agenda. Lancet 368: 2193–2195. doi: 10.1016/S0140-6736(06)69873-5
[2]  Kay B (1999) Dengue vector surveillance and control. Current opinion in infectious diseases 12: 425–432. doi: 10.1097/00001432-199910000-00003
[3]  Ross R (1911) The prevention of malaria. London: John Murray.
[4]  Mcdonald G (1957) The epidemiology and control of malaria. Oxford: Oxford University Press.
[5]  Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosemberg R (2008) Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLos Med 5: e68. doi:10.1371/journal.pmed.0050068.
[6]  World Health Organization (1997) Dengue Hemorrhagic fever. Diagnosis, Treatment, Prevention and Control. Geneva: WHO.
[7]  Erlanger TE, Keiser J, Utzinger J (2008) Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med Vet Entomol 22: 203–221. doi: 10.1111/j.1365-2915.2008.00740.x
[8]  Chadee DD (1985) An evaluation of malathion ULV spraying against caged and natural populations of Aedes aegypti in Trinidad, W.I. Cah. ORSTOM Ser. Entomol Med Parasitol 23: 71–74.
[9]  Hudson JE (1986) The emergency ultra-low volume spray campaign against Aedes aegypti adults in Paramaribo, Suriname. Bull Pan Am Health Org 20: 294–303.
[10]  Focks DA, Kloter KO, Carmichael GT (1987) The impact of sequential ultra-low volume ground aerosols applications of malathion on the population dynamics of Aedes aegypti (L.). Am J Trop Med Hyg 36: 639–647.
[11]  Perich MJ, Tidwell MA, Williams DC, Sardelis MR, Pena CJ, et al. (1990) Comparison of ground and aerial ultra-low volume applications of malathion against Aedes aegypti in Santo Domingo, Dominican Republic. J Am Mosq Control Assoc 6: 1–6.
[12]  Perich MJ, Davilla G, Turner A, Garcia A, Nelson M (2000) Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City, Panama. J Med Entomol 37: 541–546. doi: 10.1603/0022-2585-37.4.541
[13]  Mani TR, Arunachalam N, Rajendran R, Satyanarayana K, Dash AP (2005) Efficacy of thermal fog application of deltacide, a synergized mixture of pyrethroids, against Aedes aegypti, the vector of dengue. Trop Med Inter Health 10: 1298–1304. doi: 10.1111/j.1365-3156.2005.01522.x
[14]  Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, et al. (2000) Longitudinal studies of Aedes aegypti L. (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89–101. doi: 10.1603/0022-2585-37.1.89
[15]  Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, et al. (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209–220.
[16]  Sippell WL, Brown AW (1953) Studies of the responses of the female Aedes mosquito. Part V. The role of visual factors. Bull Entomol Res 43: 567–574. doi: 10.1017/s0007485300026651
[17]  Schoof HF (1967) Mating, resting habits and dispersal of Aedes aegypti. Bull World Health Org 36: 600–601.
[18]  Muir LE, Kay BH, Thorne MJ (1992) Aedes aegypti (Diptera: Culicidae) vision: response to stimuli from the optical environment. J Med Entomol 29: 445–450.
[19]  Gilbert IH, Gouk HK (1957) Influence of surface color on mosquito landing rates. J Econ Entomol 50: 678–680.
[20]  Fay RW, Prince WH (1970) A modified visual trap for Aedes aegypti. Mosq News 30: 20–23.
[21]  Kline DL (1999) Comparison of two American Biophysics mosquito traps: the professional and a new counterflow geometry trap. J Am Mosq Control Assoc 15: 276–282.
[22]  Geier M, Rose A, Gruvewald J, Jones O (2006) New mosquito traps improve the monitoring of disease vectors. Int Pest Control. Available: http://www.researchinformation.co.uk/ipc?o.php.
[23]  Edman J, Kittayapong P, Linthicum K, Scott T (1997) Attractant resting boxes for rapid collection and surveillance of Aedes aegypti (L.) inside houses. J Am Mosq Control Assoc 13: 24–27.
[24]  Baly A, Toledo ME, Boelaert M, Reyes A, Vanlerberghe V, et al. (2007) Cost-effectiveness of Aedes aegypti control programmes: participatory versus vertical. Trans R Soc Trop Med Hyg 101: 578–586. doi: 10.1016/j.trstmh.2007.01.002
[25]  Muirhead-Thomson RC (1951) Mosquito behavior in relation to malaria transmission and control in the tropics. London: Edward Arnold.
[26]  Cullen JR, Dezulueta J (1962) Observation on the irritability of mosquitoes to DDT in Uganda. Bull WHO 27: 239–250.
[27]  Hamon J, Mouchet J, Brengues J, Chauvet G (1970) Problems facing anopheline vector control: vector ecology and behavior before and after application of control measures. Conference on Anopheline Biology and Malaria Eradication. Misc Pubs Entomol Soc Am 7: 28–41.
[28]  Elliot R (1972) The influence of mosquito behavior on malaria transmission. Am J Trop Med Hyg 21: 755–763.
[29]  Gillies MT (1988) Anopheline mosquitoes: vector behavior and bionomics. In: Wernsdofer WG, McGregor I, editors. Malaria, principles and practice of malariology. New York: Churchill Livingstone. pp. 453–485.
[30]  Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HJ, Manguin S, Bangs MJ (1997) Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J Am Mosq Control Assoc 13: 171–183.
[31]  Grieco JP, Achee NL, Andre RG, Roberts DR (2000) A comparison study of house entering and exiting behavior of Anopheles vestitipennis (Diptera: Culicidae) using experimental huts sprayed with DDT or Deltamethrin in the southern district of Toledo, Belize, C.A. J Vector Ecol 25: 62–73.
[32]  Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, et al. (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. Plos ONE 2: e716. doi:10.1371/journal.pone.0000716.
[33]  Achee NL, Sardelis MR, Dusfour I, Chauhan KR, Grieco JP (2009) Characterization of spatial repellent, contact irritant, and toxicant chemical actions of standard vector control compounds. J Am Mosq Control Assoc 25: 156–167. doi: 10.2987/08-5831.1
[34]  Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh F (1997) Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc 13: 13–17.
[35]  Roberts DR, Alecrim WD, Hshieh P, Grieco JP, Bangs M, et al. (2000) A probability model of vector behavior: effects of DDT repellency, irritancy and toxicity in malaria control. J Vector Ecol 25: 48–61.
[36]  Grieco JP, Achee NL, Sardelis M, Chauhan K, Roberts DR (2005) A novel high-throughput screening system to evaluate the behavioral response of adult mosquitoes to chemicals. J Am Mosq Control Assoc 21: 404–411. doi: 10.2987/8756-971X(2006)21[404:ANHSST]2.0.CO;2
[37]  McLean-Cooper N, Achee NL, Tolbert T, Grieco JP, Williams J (2008) Space optimization method of laboratory production of Aedes aegypti. J Am Mosq Control Assoc 24: 460–462. doi: 10.2987/5649.1
[38]  Foggie T, Achee NL (2009) Standard operating procedures: rearing Aedes aegypti for the HITSS and Box laboratory assays. USUHS [Internet]. Available: http://www.usuhs.mil/pmb/gsac. Assessed 2009 April.
[39]  Chareonviriyaphap T, Prabaripai A, Sungvornyothrin S (2002) An improved excito-repellency test chamber for mosquito behavioral tests. J Vector Ecol 27: 250–252.
[40]  WHO [World Health Organization] (2009a) WHO recommended insecticides for indoor residual spraying against malaria vectors. Geneva, Switzerland: World Health Organization. Available: http://apps.who.int/malaria/cmc_upload/0?/000/012/604/IRSInsecticides.htm. Accessed 2009 September 2.
[41]  Zeichner BC, Perich MJ (1999) Laboratory testing of a lethal ovitrap for Aedes aegypti. Med Vet Entomol 13: 234–238. doi: 10.1046/j.1365-2915.1999.00192.x
[42]  Kittayapong P, Linthicum K, Edman JD, Scott TW (1997) Further evaluation of indoor resting boxes for Aedes aegypti surveillance. Dengue Bull 21: 77–83.
[43]  Ocampo CB, Gonzalez C, Morales CA, Perez M, Wesson D, et al. (2009) Evaluation of community-based strategies for Aedes aegypti control inside houses. Biomedica 29: 282–97.
[44]  Killeen GF, Smith TA (2007) Exploring the contributions of bednets, cattle, insecticides and excitorepellency to malaria control. A deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101: 867–80. doi: 10.1016/j.trstmh.2007.04.022
[45]  Miller JE, Gibson G (1994) Behavioral response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: a new approach to insecticide bioassays. J Med Entomol 31: 114–122.
[46]  Pant CP, Yasuno M (1970) Indoor resting sites of Aedes aegypti in Bangkok, Thailand. WHO/VBC/ 70.235:
[47]  Gjullin CM, Mulhern DT, Husbands RC (1963) The daily resting cycles of several species of mosquitoes. Mosq News 23: 203–210.
[48]  Ching-Luan S, Jun-Xian F, Xin-Hong C, Wen-Yean W (2007) Moisture absorption and release of profiled polyester and cotton composite knitted fabrics. Textile Res 77: 764–769. doi: 10.1177/0040517507080696
[49]  WHO [World Health Organization] (1998) Report of the WHO informal consultation.WHO/CDS/CPC/MAL/98.12. Geneva, Switzerland: World Health Organization.
[50]  Polsomboon S, Poolprasert P, Bangs MJ, Suwonkerd W, Grieco JP, et al. (2008) Effects of physiological conditioning on behavioral avoidance by using a single age group of Aedes aegypti exposed to deltamethrin and DDT. J Med Entomol 45: 251–259. doi: 10.1603/0022-2585(2008)45[251:EOPCOB]2.0.CO;2
[51]  Kanutcharee T, Achee NL, Bangs MJ, Grieco JP, Suwonkerd W, et al. (2009) Irritancy and repellency behavioral responses of three strains of Aedes aegypti exposed to DDT and α-cypermethrin. J Med Entomol 46: 1407–1414. doi: 10.1603/033.046.0622
[52]  Polsomboon S, Poolprasert P, Suwonkerd W, Bangs MJ, Tanasinchayakul S, Akratanakul P, Chareonviriyaphap T (2008) Biting patterns of Anopheles minimus complex (Diptera: Culicidae) in experimental huts treated with DDT and deltamethrin. J Vector Ecol 33: 285–292. doi: 10.3376/1081-1710-33.2.285
[53]  Malaithong N, Polsomboon S, Poolprasert P, Parbaripai A, Bangs MJ, Suwonkerd W, Pothikasikorn J, Akratanakul P, Chareonviriyaphap T (2010) Human-landing patterns of Anopheles dirus sensu lato (Diptera: Culicidae) in experimental huts treated with DDT or deltamethrin. J Med Entomol 47: 823–832. doi: 10.1603/ME09016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133