Background The gene regulation mechanism along the life cycle of the genus Schistosoma is complex. Small non-coding RNAs (sncRNAs) are essential post transcriptional gene regulation elements that affect gene expression and mRNA stability. Preliminary studies indicated that sncRNAs in schistosomal parasites are generated through different pathways, which are developmentally regulated. However, the data of sncRNAs of schistosomal parasites are still fragmental and a complete expression profile of sncRNAs during the parasite development requires a deep investigation. Methodology/Principal Findings We employed high-throughput genome-wide transcriptome analytic techniques to explore the dynamic expression of microRNAs (miRNAs) and endogenous siRNAs (endo-siRNAs) of Schistosoma japonicum covering the free-living cercarial stage and all stages in the definitive host. This led us to analyze over 70 million clean reads represented both high and low abundance of the small RNA population. Patterns of differential expression of miRNAs and endo-siRNAs were observed. MiRNAs was twice more than endo-siRNAs in cercariae, but gradually decreased along with the development of the parasite. Both small RNA types were presented in equal aboudance in lung-stage schistosomula, while endo-siRNAs accumulated to 6 times more than miRNAs in adult female worms and hepatic eggs. Further, miRNAs were found mainly derived from genes located in the intergenic regions, while endo-siRNAs were mainly generated from transposable elements (TEs). The expression pattern of TE-siRNAs, as well as the pseudogene-derived siRNAs clustered in mRNAs of cytoskeletal proteins, stress proteins, enzymes related to energy metabolism also revealed distinction throughout different developmental stages. Natural antisense transcripts (NATs)-related siRNAs accounted for minor proportion of the endo-siRNAs which were dominantly expressed in cercariae. Conclusions/Significance Our results represented a comprehensive expression profile of sncRNAs in various developmental stages of S. japonicum with high accuracy and coverage. The data would facilitate a deep understanding of the parasite biology and potential discovery of novel targets for the design of anti-parasite drugs.
References
[1]
Fenwick A, Webster JP (2006) Schistosomiasis: challenges for control, treatment and drug resistance. Curr Opin Infect Dis 19: 577–582. doi: 10.1097/01.qco.0000247591.13671.6a
[2]
Gobert GN, Moertel L, Brindley PJ, McManus DP (2009) Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics 10: 128. doi: 10.1186/1471-2164-10-128
[3]
Hirai H, Taguchi T, Saitoh Y, Kawanaka M, Sugiyama H, et al. (2000) Chromosomal differentiation of the Schistosoma japonicum complex. Int J Parasitol 30: 441–452. doi: 10.1016/S0020-7519(99)00186-1
[4]
Mone H, Boissier J (2004) Sexual biology of schistosomes. Adv Parasitol 57: 89–189. doi: 10.1016/S0065-308X(04)57002-1
[5]
Liu F, Lu J, Hu W, Wang SY, Cui SJ, et al. (2006) New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2: e29. doi: 10.1371/journal.ppat.0020029
[6]
Zhou Y, Zheng HJ, Chen YY, Zhang L, Wang K, et al. (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351. doi: 10.1038/nature08140
Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, et al. (2010) Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells. Science 328: 872–875. doi: 10.1126/science.1187959
[9]
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128: 1089–1103. doi: 10.1016/j.cell.2007.01.043
[10]
Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19: 1–15.
[11]
Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136: 656–668. doi: 10.1016/j.cell.2009.01.045
[12]
Halic M, Moazed D (2010) Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140: 504–516. doi: 10.1016/j.cell.2010.01.019
[13]
Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, et al. (2010) Transcriptional control of gene expression by microRNAs. Cell 140: 111–122. doi: 10.1016/j.cell.2009.12.023
[14]
Kawamura Y, Saito K, Kin T, Ono Y, Asai K, et al. (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453: 793–797. doi: 10.1038/nature06938
[15]
Golden DE, Gerbasi VR, Sontheimer EJ (2008) An inside job for siRNAs. Mol Cell 31: 309–312. doi: 10.1016/j.molcel.2008.07.008
[16]
Copeland CS, Marz M, Rose D, Hertel J, Brindley PJ, et al. (2009) Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 10: 464. doi: 10.1186/1471-2164-10-464
[17]
Hao L, Cai P, Jiang N, Wang H, Chen Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11: 55. doi: 10.1186/1471-2164-11-55
[18]
Huang J, Hao P, Chen H, Hu W, Yan Q, et al. (2009) Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One 4: e8206. doi: 10.1371/journal.pone.0008206
[19]
Wang Z, Xue X, Sun J, Luo R, Xu X, et al. (2010) An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Negl Trop Dis 4: e596. doi: 10.1371/journal.pntd.0000596
[20]
Xue X, Sun J, Zhang Q, Wang Z, Huang Y, et al. (2008) Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS One 3: e4034. doi: 10.1371/journal.pone.0004034
[21]
Simoes MC, Lee J, Djikeng A, Cerqueira GC, Zerlotini A, et al. (2011) Identification of Schistosoma mansoni microRNAs. BMC Genomics 12: 47. doi: 10.1186/1471-2164-12-47
[22]
Gobert GN, Tran MH, Moertel L, Mulvenna J, Jones MK, et al. (2010) Transcriptional changes in Schistosoma mansoni during early schistosomula development and in the presence of erythrocytes. PLoS Negl Trop Dis 4: e600. doi: 10.1371/journal.pntd.0000600
[23]
McManus D, Loukas A (2008) Current status of vaccines for Schistosomaisis. Clinical Review of Microbiology. pp. 225–242.
[24]
Cai P, Bu L, Wang J, Wang Z, Zhong X, et al. (2008) Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: sequence variation and possible implications for immune evasion. Biochem Biophys Res Commun 372: 197–202. doi: 10.1016/j.bbrc.2008.05.042
[25]
Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714. doi: 10.1093/bioinformatics/btn025
[26]
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–144. doi: 10.1093/nar/gkj112
[27]
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–158. doi: 10.1093/nar/gkm952
[28]
Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13: 497–498. doi: 10.1016/S0168-9525(97)01347-4
[29]
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33: D121–124. doi: 10.1093/nar/gki081
[30]
Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277. doi: 10.1016/S0168-9525(00)02024-2
[31]
Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14: 787–799. doi: 10.1016/j.molcel.2004.05.027
[32]
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, et al. (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125: 167–188. doi: 10.1007/bf00818163
[33]
Romualdi C, Bortoluzzi S, D'Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12: 159–162. doi: 10.1152/physiolgenomics.00096.2002
[34]
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179. doi: 10.1093/nar/gni178
[35]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[36]
Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, et al. (2010) A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res 38: e98. doi: 10.1093/nar/gkp1235
[37]
Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3: 1077–1084. doi: 10.1038/nprot.2008.67
[38]
Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, et al. (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320: 1077–1081. doi: 10.1126/science.1157396
[39]
Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, et al. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453: 539–543. doi: 10.1038/nature06908
[40]
Chung WJ, Okamura K, Martin R, Lai EC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18: 795–802. doi: 10.1016/j.cub.2008.05.006
[41]
Lu YC, Smielewska M, Palakodeti D, Lovci MT, Aigner S, et al. (2009) Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. Rna 15: 1483–1491. doi: 10.1261/rna.1702009
[42]
Friedlander MR, Adamidi C, Han T, Lebedeva S, Isenbarger TA, et al. (2009) High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A 106: 11546–11551. doi: 10.1073/pnas.0905222106
[43]
Palakodeti D, Smielewska M, Graveley BR (2006) MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology. Rna 12: 1640–1649. doi: 10.1261/rna.117206
[44]
Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862. doi: 10.1126/science.1065062
[45]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858. doi: 10.1126/science.1064921
[46]
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902–1910. doi: 10.1101/gr.2722704
[47]
Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, et al. (2009) Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics 10: 65. doi: 10.1186/1471-2164-10-65
[48]
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407–3425. doi: 10.1101/gad.1476406
[49]
Meyers BC, Tej SS, Vu TH, Haudenschild CD, Agrawal V, et al. (2004) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14: 1641–1653. doi: 10.1101/gr.2275604
[50]
Huang J, Hao P, Zhang YL, Deng FX, Deng Q, et al. (2007) Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS). BMC Genomics 8: 207. doi: 10.1186/1471-2164-8-207
[51]
Curwen RS, Ashton PD, Sundaralingam S, Wilson RA (2006) Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 5: 835–844. doi: 10.1074/mcp.M500313-MCP200
[52]
Marikovsky M, Arnon R, Fishelson Z (1988) Proteases secreted by transforming schistosomula of Schistosoma mansoni promote resistance to killing by complement. J Immunol 141: 273–278.
[53]
Morey JS, Ryan JC, FM VD (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8: 175–193. doi: 10.1251/bpo126
[54]
Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, et al. (2011) Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol 41: 439–448. doi: 10.1016/j.ijpara.2010.11.010
[55]
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, et al. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453: 534–538. doi: 10.1038/nature06904
[56]
Okamura K, Balla S, Martin R, Liu N, Lai EC (2008) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15: 581–590. doi: 10.1038/nsmb.1438
[57]
Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, et al. (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453: 803–806. doi: 10.1038/nature07015
[58]
Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, et al. (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453: 798–802. doi: 10.1038/nature07007
[59]
Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9: 673–678. doi: 10.1038/nrm2479
[60]
Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642–655. doi: 10.1016/j.cell.2009.01.035
[61]
Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7: 1216–1222. doi: 10.1038/sj.embor.7400857
[62]
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123: 1279–1291. doi: 10.1016/j.cell.2005.11.035
[63]
Andre G, Even S, Putzer H, Burguiere P, Croux C, et al. (2008) S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 36: 5955–5969. doi: 10.1093/nar/gkn601
[64]
Solda G, Suyama M, Pelucchi P, Boi S, Guffanti A, et al. (2008) Non-random retention of protein-coding overlapping genes in Metazoa. BMC Genomics 9: 174. doi: 10.1186/1471-2164-9-174
[65]
Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108. doi: 10.1038/nrg2504
[66]
Koziol U, Iriarte A, Castillo E, Soto J, Bello G, et al. (2009) Characterization of a putative hsp70 pseudogene transcribed in protoscoleces and adult worms of Echinococcus granulosus. Gene 443: 1–11. doi: 10.1016/j.gene.2009.05.004
[67]
Smooker PM, Jayaraj R, Pike RN, Spithill TW (2010) Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 26: 506–514. doi: 10.1016/j.pt.2010.06.001