Background In endemic areas, Rift Valley fever virus (RVFV) is a significant threat to both human and animal health. Goals of this study were to measure human anti-RVFV seroprevalence in a high-risk area following the 2006–2007 Kenyan Rift Valley Fever (RVF) epidemic, to identify risk factors for interval seroconversion, and to monitor individuals previously exposed to RVFV in order to document the persistence of their anti-RVFV antibodies. Methodology/Findings We conducted a village cohort study in Ijara District, Northeastern Province, Kenya. One hundred two individuals tested for RVFV exposure before the 2006–2007 RVF outbreak were restudied to determine interval anti-RVFV seroconversion and persistence of humoral immunity since 2006. Ninety-two additional subjects were enrolled from randomly selected households to help identify risk factors for current seropositivity. Overall, 44/194 or 23% (CI95%:17%–29%) of local residents were RVFV seropositive. 1/85 at-risk individuals restudied in the follow-up cohort had seroconverted since early 2006. 27/92 (29%, CI95%: 20%–39%) of newly tested individuals were seropositive. All 13 individuals with positive titers (by plaque reduction neutralization testing (PRNT80)) in 2006 remained positive in 2009. After adjustment in multivariable logistic models, age, village, and drinking raw milk were significantly associated with RVFV seropositivity. Visual impairment (defined as ≤20/80) was much more likely in the RVFV-seropositive group (P<0.0001). Conclusions Our results highlight significant variability in RVFV exposure in two neighboring villages having very similar climate, terrain, and insect density. Among those with previous exposure, RVFV titers remained at >1:40 for more than 3 years. In concordance with previous studies, residents of the more rural village were more likely to be seropositive and RVFV seropositivity was associated with poor visual acuity. Raw milk consumption was strongly associated with RVFV exposure, which may represent an important new focus for public health education during future RVF outbreaks.
Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley fever: an undescribed virus disease of sheep, cattle and man from East Africa. Journal of Pathology and Bacteriology 34: 545–579. doi: 10.1002/path.1700340418
[3]
WHO (2000) Rift Valley Fever. WHO Fact Sheet No 207: 1–5.
[4]
CDC (2000) Outbreak of Rift Valley fever–Yemen, August–October 2000. MMWR 49: 1065–1066. doi: 10.1001/jama.284.18.2310
[5]
El-Akkad AM (1978) Rift Valley Fever outbreak in Egypt. October-December 1977. J Egypt Publ Health Assoc 53: 137–146.
[6]
CDC (2000) Update: Outbreak of Rift Valley Fever - Saudi Arabia, August–November 2000. MMWR 49: 982–985. doi: 10.1001/jama.284.23.2989
[7]
Linthicum KJ, Davies FG, Kairo A, Bailey CL (1985) Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. The Journal of hygiene 95: 197–209. doi: 10.1017/S0022172400062434
[8]
Meegan JM, Khalil GM, Hoogstrall H, Adham FK (1980) Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am J Trop Med Hyg 29: 1405–1409.
[9]
CDC (2007) Rift Valley Fever. pp. 1–3. Viral Hemorrhagic Fevers: Fact Sheets.
[10]
Laughlin LW, Meegan JM, Strausbaugh LJ (1979) Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 73: 630–633. doi: 10.1016/0035-9203(79)90006-3
[11]
Al-Hazmi M, Ayoola EA, Abdurahman M, Banzal S, Ashraf J, et al. (2003) Epidemic Rift Valley fever in Saudi Arabia: a clinical study of severe illness in humans. Clin Infect Dis 36: 245–252. doi: 10.1086/345671
[12]
Alrajhi AA, Al-Semari A, Al-Watban J (2004) Rift Valley fever encephalitis. Emerg Infect Dis 10: 554–555. doi: 10.3201/eid1003.020817
[13]
Ayoola AE, Hazmi MHA-, Michail NT, Aderoju A, Hafez MM, et al. (2003) Liver involvement in patients with moderately severe Rift Valley fever. American Journal of Gastroenterology 98: S92–S92.
[14]
Laughlin LW, Girgis NI, Meegan JM, Strausbaugh LJ, Yassin MW, et al. (1978) Clinical studies on Rift Valley fever. Part 2: Ophthalmologic and central nervous system complications. J Egypt Public Health Assoc 53: 183–184.
[15]
Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, et al. (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37: 1084–1092. doi: 10.1086/378747
[16]
Peters CJ, Liu CT, Anderson GW Jr, Morrill JC, Jahrling PB (1989) Pathogenesis of viral hemorrhagic fevers: Rift Valley fever and Lassa fever contrasted. Rev Infect Dis 11: Suppl 4S743–749. doi: 10.1093/clinids/11.Supplement_4.S743
[17]
Strausbaugh LJ, Laughlin LW, Meegan JM, Watten RH (1978) Clinical studies on Rift Valley fever, Part I: Acute febrile and hemorrhagic-like diseases. J Egypt Public Health Assoc 53: 181–182.
[18]
Al-Hazmi A, Al-Rajhi AA, Abboud EB, Ayoola EA, Al-Hazmi M, et al. (2005) Ocular complications of Rift Valley fever outbreak in Saudi Arabia. Ophthalmology 112: 313–318. doi: 10.1016/j.ophtha.2004.09.018
[19]
Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ (2009) Rift Valley fever virus. Journal of the American Veterinary Medical Association 234: 883–893. doi: 10.2460/javma.234.7.883
[20]
Davies FG (1975) Observations on the Epidemiology of Rift Valley fever in Kenya. The Journal of Hygiene 75: 219–230. doi: 10.1017/S0022172400047252
[21]
WHO (2007) Outbreaks of Rift Valley fever in Kenya, Somalia and United Republic of Tanzania, December 2006–April 2007. Wkly Epidemiol Rec 82: 169–178.
[22]
CDC (2007) Rift Valley fever outbreak–Kenya, November 2006–January 2007. Morb Mortal Wkly Rep 56: 73–76.
[23]
LaBeaud AD, Muchiri EM, Ndzovu M, Mwanje MT, Muiruri S, et al. (2008) Interepidemic Rift Valley Fever Virus Seropositivity, Northeastern Kenya. Emerging Infectious Diseases 14: 1240–1246. doi: 10.3201/eid1408.080082
[24]
Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, et al. (2002) An outbreak of Rift Valley Fever in Northeastern Kenya, 1997–98. Emerging Infectious Diseases 8: 138–144. doi: 10.3201/eid0802.010023
[25]
Niklasson B, Grandien M, Peters CJ, Gargan TP (1983) Detection of Rift Valley fever virus antigen by enzyme-linked immunosorbent assay. J Clin Microbiol 17: 1026–1031.
[26]
LaBeaud AD, Ochiai Y, Peters C, Muchiri EM, King CH (2007) Spectrum of Rift Valley Fever Virus Transmission in Kenya: Insights from three Distinct Regions. The American Journal of Tropical Medicine and Hygiene 76: 795–800.
[27]
Meadors GF, Gibbs PH, Peters CJ (1986) Evaluation of a new Rift Valley fever vaccine: safety and immunogenicity trials. Vaccine 4: 179–184. doi: 10.1016/0264-410X(86)90007-1
[28]
Morrill JC, Carpenter L, Taylor D, Ramsburg HH, Quance J, et al. (1991) Further evaluation of a mutagen-attenuated Rift Valley fever vaccine in sheep. Vaccine 9: 35–41. doi: 10.1016/0264-410X(91)90314-V
[29]
Freund RJ, Littell RC (2000) SAS System for regression. Cary, N.C.: SAS Institute.
[30]
Mohamed M, Mosha F, Mghamba J, Zaki SR, Shieh WJ, et al. (2010) Epidemiologic and clinical aspects of a Rift Valley fever outbreak in humans in Tanzania, 2007. Am J Trop Med Hyg 83: 22–27. doi: 10.4269/ajtmh.2010.09-0318
Todd FA (1953) The Veterinarian in Civil Defence. Can J Comp Med Vet Sci 17: 338–343.
[33]
Alexander R (1951) Rift Valley fever in the Union. Journal of the South African Veterinary Medical Association 22: 105–111.
[34]
Easterday BC, Murphy LC, Bennett CG (1962) Experimental Rift Valley fever in calves, goats and pigs. Am J Vet Res 23: 1224–1230.
[35]
Morrill JC, Mebus CA, Peters CJ (1997) Safety and efficacy of a mutagen-attenuated Rift Valley fever virus vaccine in cattle. Am J Vet Res 58: 1104–1109.