全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differences between Trypanosoma brucei gambiense Groups 1 and 2 in Their Resistance to Killing by Trypanolytic Factor 1

DOI: 10.1371/journal.pntd.0001287

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The three sub-species of Trypanosoma brucei are important pathogens of sub-Saharan Africa. T. b. brucei is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. T. b. rhodesiense and T. b. gambiense are able to resist lysis by TLF. There are two distinct sub-groups of T. b. gambiense that differ genetically and by human serum resistance phenotypes. Group 1 T. b. gambiense have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 T. b. gambiense are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (HpHbR)) gene. Here we investigate if this is also true in group 2 parasites. Methodology Isogenic resistant and sensitive group 2 T. b. gambiense were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the HpHbR gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to T. b. brucei. Both resistant and sensitive group 2, as well as group 1 T. b. gambiense, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed. Conclusions Our data indicate that, despite group 1 T. b. gambiense avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 T. b. gambiense is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 T. b. gambiense variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of HpHbR. Thus there are differences in the mechanism of human serum resistance between T. b. gambiense groups 1 and 2.

References

[1]  Pays E, Vanhollebeke B (2009) Human innate immunity against African trypanosomes. Curr Opin Immunol 21: 493–498. doi: 10.1016/j.coi.2009.05.024
[2]  WHO (2006) Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol Rec 81: 71–80.
[3]  Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D (2001) The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 114: 1–16. doi: 10.1016/S0166-6851(01)00242-0
[4]  Barry J, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49: 1–70. doi: 10.1016/s0065-308x(01)49037-3
[5]  Thomson R, Molina-Portela P, Mott H, Carrington M, Raper J (2009) Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proc Natl Acad Sci U S A 106: 19509–19514. doi: 10.1073/pnas.0905669106
[6]  Seed J, Sechelski J, Loomis M (1990) A survey for a trypanocidal factor in primate sera. J Protozool 37: 393–400. doi: 10.1111/j.1550-7408.1990.tb01163.x
[7]  Poelvoorde P, Vanhamme L, Van Den Abbeele J, Switzer W, Pays E (2004) Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera. Mol Biochem Parasitol 134: 155–157. doi: 10.1016/j.molbiopara.2003.11.006
[8]  Hajduk SL, Moore DR, Vasudevacharya J, Siqueira H, Torri AF, et al. (1989) Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J Biol Chem 264: 5210–5217.
[9]  Rifkin MR (1978) Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci U S A 75: 3450–3454. doi: 10.1073/pnas.75.7.3450
[10]  Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S (1999) Characterization of a novel trypanosome lytic factor from human serum. Infect Immun 67: 1910–1916.
[11]  Widener J, Nielsen MJ, Shiflett A, Moestrup SK, Hajduk S (2007) Hemoglobin is a co-factor of human trypanosome lytic factor. PLoS Pathog 3: 1250–1261. doi: 10.1371/journal.ppat.0030129
[12]  Vanhollebeke B, Nielsen MJ, Watanabe Y, Truc P, Vanhamme L, et al. (2007) Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum. Proc Natl Acad Sci U S A 104: 4118–4123. doi: 10.1073/pnas.0609902104
[13]  Vanhollebeke B, De Muylder G, Nielsen M, Pays A, Tebabi P, et al. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320: 677–681. doi: 10.1126/science.1156296
[14]  Drain J, Bishop J, Hajduk S (2001) Haptoglobin-related protein mediates trypanosome lytic factor binding to trypanosomes. J Biol Chem 276: 30254–30260. doi: 10.1074/jbc.M010198200
[15]  Shiflett AM, Bishop JR, Pahwa A, Hajduk SL (2005) Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem 280: 32578–32585. doi: 10.1074/jbc.M503510200
[16]  Harrington JM, Widener J, Stephens N, Johnson T, Francia M, et al. (2010) The plasma membrane of bloodstream-form African trypanosomes confers susceptibility and specificity to killing by hydrophobic peptides. J Biol Chem 285: 28659–28666. doi: 10.1074/jbc.M110.151886
[17]  Hager K, Pierce M, Moore D, Tytler E, Esko J, et al. (1994) Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol 126: 155–167. doi: 10.1083/jcb.126.1.155
[18]  Molina-Portela Mdel P, Lugli EB, Recio-Pinto E, Raper J (2005) Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol Biochem Parasitol 144: 218–226. doi: 10.1016/j.molbiopara.2005.08.018
[19]  Vanhollebeke B, Pays E (2010) The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 76: 806–814. doi: 10.1111/j.1365-2958.2010.07156.x
[20]  Welburn SC, Picozzi K, Fevre EM, Coleman PG, Odiit M, et al. (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358: 2017–2019. doi: 10.1016/S0140-6736(01)07096-9
[21]  Lecordier L, Vanhollebeke B, Poelvoorde P, Tebabi P, Paturiaux-Hanocq F, et al. (2009) C-terminal mutants of apolipoprotein L-I efficiently kill both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS Pathog 5: e1000685. doi: 10.1371/journal.ppat.1000685
[22]  Lukes J, Raper J (2010) Prophylactic antiparasitic transgenesis for human parasitic disease? Mol Ther 18: 1745–1747. doi: 10.1038/mt.2010.193
[23]  De Greef C, Imberechts H, Matthyssens G, Van Meirvenne N, Hamers R (1989) A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 36: 169–176. doi: 10.1016/0166-6851(89)90189-8
[24]  De Greef C, Chimfwembe E, Kihang'a Wabacha J, Bajyana Songa E, Hamers R (1992) Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein. Ann Soc Belg Med Trop 72: Suppl 113–21.
[25]  Gibson W, Backhouse T, Griffiths A (2002) The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect Genet Evol 1: 207–214. doi: 10.1016/S1567-1348(02)00028-X
[26]  Paindavoine P, Pays E, Laurent M, Geltmeyer Y, Le Ray D, et al. (1986) The use of DNA hybridization and numerical taxomony in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitology 92: 31–50. doi: 10.1017/S0031182000063435
[27]  Hide G, Cattand P, Le Ray D, Barry JD, Tait A (1990) The identification of Trypanosoma brucei subspecies using repetitive DNA sequences. Molecular and Biochemical Parasitology 39: 213–226. doi: 10.1016/0166-6851(90)90060-Y
[28]  Truc P, Tibayrenc M (1993) Population genetics of Trypanosoma brucei in Central Africa: taxonomic and epidemiological significance. Parasitology 106: 137–149. doi: 10.1017/S003118200007493X
[29]  Jamonneau V, Ravel S, Garcia A, Koffi M, Truc P, et al. (2004) Characterization of Trypanosoma brucei s.l. infecting asymptomatic sleeping-sickness patients in Cote d'Ivoire: a new genetic group? Ann Trop Med Parasitol 98: 329–337. doi: 10.1179/000349804225003406
[30]  Gibson WC, Marshall TF, Godfrey DG (1980) Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv Parasitol 18: 175–246. doi: 10.1016/s0065-308x(08)60400-5
[31]  Mehlitz D, Zillmann U, Scott CM, Godfrey DG (1982) Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed Parasitol 33: 113–118.
[32]  Tait A, Babiker EA, Le Ray D (1984) Enzyme variation in Trypanosoma brucei spp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense. Parasitology 89(Pt 2): 311–326. doi: 10.1017/S0031182000001335
[33]  Zillmann U, Mehlitz D, Sachs R (1984) Identity of Trypanozoon stocks isolated from man and a domestic dog in Liberia. Tropenmed Parasitol 35: 105–108.
[34]  Gibson WC (1986) Will the real Trypanosoma b. gambiense please stand up. Parasitol Today 2: 255–257. doi: 10.1016/0169-4758(86)90011-6
[35]  Balmer O, Beadell JS, Gibson W, Caccone A (2011) Phylogeography and Taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5: e961. doi: 10.1371/journal.pntd.0000961
[36]  Kieft R, Capewell P, Turner CM, Veitch NJ, MacLeod A, et al. (2010) Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc Natl Acad Sci U S A 107: 16137–16141. doi: 10.1073/pnas.1007074107
[37]  Radwanska M, Claes F, Magez S, Magnus E, Perez-Morga D, et al. (2002) Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am J Trop Med Hyg 67: 289–295.
[38]  Hirumi H, Hirumi K (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75: 985–989. doi: 10.2307/3282883
[39]  Shiflett AM, Bishop JR, Pahwa A, Hajduk SL (2005) Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem 280: 32578–32585. doi: 10.1074/jbc.M503510200
[40]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[41]  Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[42]  Berberof M, Perez-Morga D, Pays E (2001) A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol Biochem Parasitol 113: 127–138. doi: 10.1016/S0166-6851(01)00208-0
[43]  Morrison LJ, Tait A, McCormack G, Sweeney L, Black A, et al. (2008) Trypanosoma brucei gambiense Type 1 populations from human patients are clonal and display geographical genetic differentiation. Infect Genet Evol 8: 847–854. doi: 10.1016/j.meegid.2008.08.005
[44]  Becker M, Aitcheson N, Byles E, Wickstead B, Louis E, et al. (2004) Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Res 14: 2319–2329. doi: 10.1101/gr.2955304
[45]  Steverding D, Stierhof Y, Chaudhri M, Ligtenberg M, Schell D, et al. (1994) ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol 64: 78.
[46]  Turner CM, McLellan S, Lindergard LA, Bisoni L, Tait A, et al. (2004) Human infectivity trait in Trypanosoma brucei: stability, heritability and relationship to sra expression. Parasitology 129: 445–454. doi: 10.1017/S0031182004005906
[47]  Cooper A, Tait A, Sweeney L, Tweedie A, Morrison L, et al. (2008) Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map. Genome Biol 9: R103. doi: 10.1186/gb-2008-9-6-r103
[48]  De Greef C, Hamers R (1994) The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol Biochem Parasitol 68: 277–284. doi: 10.1016/0166-6851(94)90172-4
[49]  Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J, et al. (1998) A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95: 839–846. doi: 10.1016/S0092-8674(00)81706-7
[50]  Ligtenberg M, Bitter W, Kieft R, Steverding D, Janssen H, et al. (1994) Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J 13: 2565.
[51]  Salmon D, Geuskens M, Hanocq F, Hanocq-Quertier J, Nolan D, et al. (1994) A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell 78: 75–86. doi: 10.1016/0092-8674(94)90574-6
[52]  Steverding D, Stierhof YD, Fuchs H, Tauber R, Overath P (1995) Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol 131: 1173–1182. doi: 10.1083/jcb.131.5.1173
[53]  Young R, Taylor JE, Kurioka A, Becker M, Louis EJ, et al. (2008) Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 9: 385. doi: 10.1186/1471-2164-9-385
[54]  Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309: 416–422. doi: 10.1126/science.1112642
[55]  Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, et al. (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 4: e658. doi: 10.1371/journal.pntd.0000658
[56]  Becker M, Aitcheson N, Byles E, Wickstead B, Louis E, et al. (2004) Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Res 14: 2319–2329. doi: 10.1101/gr.2955304
[57]  Bringaud F, Biteau N, Donelson JE, Baltz T (2001) Conservation of metacyclic variant surface glycoprotein expression sites among different trypanosome isolates. Mol Biochem Parasitol 113: 67–78. doi: 10.1016/S0166-6851(00)00381-9
[58]  Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, et al. (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Neglected Tropical Diseases 4: e658. doi: 10.1371/journal.pntd.0000658
[59]  Gibson WC (1986) Will the real Trypanosoma b. gambiense please stand up. Parasitology Today 2: 255–257. doi: 10.1016/0169-4758(86)90011-6
[60]  Hide G, Welburn SC, Tait A, Maudlin I (1994) Epidemiological relationships of Trypanosoma brucei stocks from South East Uganda: evidence for different population structures in human infective and non-human infective isolates. Parasitology 109: 95–111. doi: 10.1017/S0031182000077805
[61]  Molina-Portela MP, Samanovic M, Raper J (2008) Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. J Exp Med 205: 1721–1728. doi: 10.1084/jem.20071463
[62]  Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, et al. (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422: 83–87. doi: 10.1038/nature01461
[63]  Page NM, Olano-Martin E, Lanaway C, Turner R, Minihane AM (2006) Polymorphisms in the Apolipoprotein L1 gene and their effects on blood lipid and glucose levels in middle age males. Genes Nutr 1: 133–135. doi: 10.1007/BF02829955
[64]  Ortiz JC, Sechelski JB, Seed JR (1994) Characterization of human serum-resistant and serum-sensitive clones from a single Trypanosoma brucei gambiense parental clone. J Parasitol 80: 550–557. doi: 10.2307/3283190
[65]  Grab DJ, Kennedy PG (2008) Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 14: 344–351. doi: 10.1080/13550280802282934
[66]  Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6: 451–464. doi: 10.1038/nrg1615
[67]  Enyaru JC, Matovu E, Nerima B, Akol M, Sebikali C (2006) Detection of T.b. rhodesiense trypanosomes in humans and domestic animals in south east Uganda by amplification of serum resistance-associated gene. Ann N Y Acad Sci 1081: 311–319. doi: 10.1196/annals.1373.041
[68]  Godfrey DG, Kilgour V (1976) Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. Trans R Soc Trop Med Hyg 70: 219–224. doi: 10.1016/0035-9203(76)90043-2
[69]  Mathieu-daude F, Tibayrenc M (1994) Isozyme Variability of Trypanosoma-brucei S-L - Genetic, Taxonomic, and Epidemiologic Significance. Exp Parasitol 78: 1–19. doi: 10.1006/expr.1994.1001
[70]  Stevens JR, Tibayrenc M (1996) Trypanosoma brucei sl: Evolution, linkage and the clonality debate. Parasitology 112: 481–488. doi: 10.1017/S0031182000076940
[71]  Faulkner SD, Oli MW, Kieft R, Cotlin L, Widener J, et al. (2006) In vitro generation of human high-density-lipoprotein-resistant Trypanosoma brucei brucei. Eukaryot Cell 5: 1276–1286. doi: 10.1128/EC.00116-06

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133