Background Dengue is a major public health problem in tropical and subtropical countries. Exploring the relationships between virological features of infection with patient immune status and outcome may help to identify predictors of disease severity and enable rational therapeutic strategies. Methods Clinical features, antibody responses and virological markers were characterized in Vietnamese adults participating in a randomised controlled treatment trial of chloroquine. Results Of the 248 patients with laboratory-confirmed dengue and defined serological and clinical classifications 29 (11.7%) had primary DF, 150 (60.5%) had secondary DF, 4 (1.6%) had primary DHF and 65 (26.2%) had secondary DHF. DENV-1 was the commonest serotype (57.3%), then DENV-2 (20.6%), DENV-3 (15.7%) and DENV-4 (2.8%). DHF was associated with secondary infection (Odds ratio = 3.13, 95% CI 1.04–12.75). DENV-1 infections resulted in significantly higher viremia levels than DENV-2 infections. Early viremia levels were higher in DENV-1 patients with DHF than with DF, even if the peak viremia level was often not observed because it occurred prior to enrolment. Peak viremias were significantly less often observed during secondary infections than primary for all disease severity grades (P = 0.001). The clearance of DENV viremia and NS1 antigenemia occurs earlier and faster in patients with secondary dengue (P<0.0001). The maximum daily rate of viremia clearance was significantly higher in patients with secondary infections than primary (P<0.00001). Conclusions Collectively, our findings suggest that the early magnitude of viremia is positively associated with disease severity. The clearance of DENV is associated with immune status, and there are serotype dependent differences in infection kinetics. These findings are relevant for the rational design of randomized controlled trials of therapeutic interventions, especially antivirals.
References
[1]
Chang G-J (1997) Molecular biology of dengue viruses. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorrhagic fever. New York: CAB Internaltional. pp. 175–198.
[2]
Thein S, Aung MM, Shwe TN, Aye M, Zaw A, et al. (1997) Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56: 566–572.
[3]
Graham RR, Juffrie M, Tan R, Hayes CG, Laksono I, et al. (1999) A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am J Trop Med Hyg 61: 412–419.
[4]
Burke DS, Nisalak A, Johnson DE, Scott RM (1988) A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38: 172–180.
[5]
Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S (1984) Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120: 653–669.
[6]
Halstead S, O'Rourke E (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265: doi: 10.1038/265739a0
[7]
Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, et al. (2008) A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 181: 5865–5874.
[8]
Littaua R, Kurane I, Ennis FA (1990) Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 144: 3183–3186.
[9]
Huang KJ, Yang YC, Lin YS, Huang JH, Liu HS, et al. (2006) The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176: 2825–2832.
[10]
Rico-Hesse R (2003) Microevolution and virulence of dengue viruses. Adv Virus Res 59: 315–341. doi: 10.1016/s0065-3527(03)59009-1
[11]
Rico-Hesse R (2007) Dengue virus evolution and virulence models. Clin Infect Dis 44: 1462–1466. doi: 10.1086/517587
[12]
Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, et al. (2003) High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305: 330–338. doi: 10.1006/viro.2002.1704
[13]
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 2–9. doi: 10.1086/315215
[14]
Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, et al. (2002) Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis 185: 1213–1221. doi: 10.1086/340365
[15]
Duyen HT, Ngoc TV, Ha DT, Hang VT, Kieu NT, et al. (2011) Kinetics of Plasma Viremia and Soluble Nonstructural Protein 1 Concentrations in Dengue: Differential Effects According to Serotype and Immune Status. J Infect Dis.
[16]
Malavige GN, Velathanthiri VG, Wijewickrama ES, Fernando S, Jayaratne SD, et al. (2006) Patterns of disease among adults hospitalized with dengue infections. QJM 99: 299–305. doi: 10.1093/qjmed/hcl039
[17]
Lin CC, Huang YH, Shu PY, Wu HS, Lin YS, et al. (2010) Characteristic of dengue disease in Taiwan: 2002–2007. Am J Trop Med Hyg 82: 731–739. doi: 10.4269/ajtmh.2010.09-0549
[18]
Kuberski T, Rosen L, Reed D, Mataika J (1977) Clinical and laboratory observations on patients with primary and secondary dengue type 1 infections with hemorrhagic manifestations in Fiji. Am J Trop Med Hyg 26: 775–783.
[19]
Yeh WT, Chen RF, Wang L, Liu JW, Shaio MF, et al. (2006) Implications of previous subclinical dengue infection but not virus load in dengue hemorrhagic fever. FEMS Immunol Med Microbiol 48: 84–90. doi: 10.1111/j.1574-695X.2006.00127.x
[20]
Wang WK, Chen HL, Yang CF, Hsieh SC, Juan CC, et al. (2006) Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin Infect Dis 43: 1023–1030. doi: 10.1086/507635
[21]
Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, et al. (2010) A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4: e785. doi: 10.1371/journal.pntd.0000785
[22]
Hang VT, Nguyet NM, Trung DT, Tricou V, Yoksan S, et al. (2009) Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. PLoS Negl Trop Dis 3: e360. doi: 10.1371/journal.pntd.0000360
[23]
Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, et al. (2007) Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 195: 1097–1107. doi: 10.1086/512162
[24]
Cardosa MJ, Wang SM, Sum MS, Tio PH (2002) Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. BMC Microbiol 2: 9. doi: 10.1186/1471-2180-2-9
[25]
Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, et al. (1989) An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 40: 418–427.
[26]
WHO (1997) Dengue haemorrhagic fever- Diagnosis, treatment, prevention and control. 2nd ed. Geneva: World Health Organization.
[27]
Fox A, Hoa lN, Simmons CP, Wolbers M, Wertheim HF, et al. (2011) Immunological and viral determinants of dengue severity in hospitalized adults in ha noi, viet nam. PLoS Negl Trop Dis 5: e967. doi: 10.1371/journal.pntd.0000967
[28]
Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, et al. (2003) Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68: 191–202.
[29]
Tricou V, Vu HT, Quynh NV, Nguyen CV, Tran HT, et al. (2010) Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infect Dis 10: 142. doi: 10.1186/1471-2334-10-142
[30]
Dussart P, Petit L, Labeau B, Bremand L, Leduc A, et al. (2008) Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis 2: e280. doi: 10.1371/journal.pntd.0000280
[31]
Chaterji S, Allen JC, Chow A, Leo YS, Ooi EE (2011) Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults. Am J Trop Med Hyg 84: 224–228. doi: 10.4269/ajtmh.2011.10-0316
[32]
Chuansumrit A, Chaiyaratana W, Pongthanapisith V, Tangnararatchakit K, Lertwongrath S, et al. (2008) The use of dengue nonstructural protein 1 antigen for the early diagnosis during the febrile stage in patients with dengue infection. Pediatr Infect Dis J 27: 43–48. doi: 10.1097/INF.0b013e318150666d
[33]
Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL (2011) NK cells and immune “memory”. J Immunol 186: 1891–1897. doi: 10.4049/jimmunol.1003035
[34]
Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD, et al. (2009) Evaluation of commercially available anti-dengue virus immunoglobulin M tests. Emerg Infect Dis 15: 436–440. doi: 10.3201/eid1503.080923
[35]
Tanner L, Schreiber M, Low JG, Ong A, Tolfvenstam T, et al. (2008) Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis 2: e196. doi: 10.1371/journal.pntd.0000196
[36]
Potts JA, Gibbons RV, Rothman AL, Srikiatkhachorn A, Thomas SJ, et al. (2010) Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl Trop Dis 4: e769. doi: 10.1371/journal.pntd.0000769
[37]
Schul W, Liu W, Xu HY, Flamand M, Vasudevan SG (2007) A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J Infect Dis 195: 665–674. doi: 10.1086/511310
[38]
Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, et al. (2010) Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6: e1000790. doi: 10.1371/journal.ppat.1000790
[39]
Zellweger RM, Prestwood TR, Shresta S (2010) Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7: 128–139. doi: 10.1016/j.chom.2010.01.004
[40]
Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, et al. (2010) Immature dengue virus: a veiled pathogen? PLoS Pathog 6: e1000718. doi: 10.1371/journal.ppat.1000718
[41]
Innis BL, Eckels KH, Kraiselburd E, Dubois DR, Meadors GF, et al. (1988) Virulence of a live dengue virus vaccine candidate: a possible new marker of dengue virus attenuation. J Infect Dis 158: 876–880. doi: 10.1093/infdis/158.4.876
[42]
McKee KT, Bancroft WH, Eckels KH, Redfield RR, Summers PL, et al. (1987) Lack of attenuation of a candidate dengue 1 vaccine (45AZ5) in human volunteers. Am J Trop Med Hyg 36: 435–442.
[43]
Eckels KH, Scott RM, Bancroft WH, Brown J, Dubois DR, et al. (1984) Selection of attenuated dengue 4 viruses by serial passage in primary kidney cells. V. Human response to immunization with a candidate vaccine prepared in fetal rhesus lung cells. Am J Trop Med Hyg 33: 684–689.