[1] | Herwaldt BL (1999) Leishmaniasis. Lancet 354: 1191–1199. doi: 10.1016/S0140-6736(98)10178-2
|
[2] | Reithinger R (2008) Leishmaniases' burden of disease: ways forward for getting from speculation to reality. PLoS Negl Trop Dis 2: e285. doi: 10.1371/journal.pntd.0000285
|
[3] | Karp CL, Neva FA (1999) Tropical infectious diseases in human immunodeficiency virus-infected patients. Clin Infect Dis 28: 947–963; quiz 964–945. doi: 10.1086/514745
|
[4] | Sundar S, Chakravarty J, Agarwal D, Rai M, Murray HW (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362: 504–512. doi: 10.1056/NEJMoa0903627
|
[5] | Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19: 111–126. doi: 10.1128/CMR.19.1.111-126.2006
|
[6] | Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen JA, et al. (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis 5: 763–774. doi: 10.1016/S1473-3099(05)70296-6
|
[7] | Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80: 580–582.
|
[8] | Sundar S, More DK, Singh MK, Singh VP, Sharma S, et al. (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clinical Infectious Diseases 31: 1104–1107. doi: 10.1086/318121
|
[9] | Velez ID, Colmenares LM, Munoz CA (2009) Two cases of visceral leishmaniasis in Colombia resistant to meglumine antimonial treatment. Rev Inst Med Trop Sao Paulo 51: 231–236. doi: 10.1590/S0036-46652009000400011
|
[10] | Maurer M, Dondji B, von Stebut E (2009) What determines the success or failure of intracellular cutaneous parasites? Lessons learned from leishmaniasis. Med Microbiol Immunol 198: 137–146. doi: 10.1007/s00430-009-0114-9
|
[11] | Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213: 159–179. doi: 10.1111/j.1600-065X.2006.00432.x
|
[12] | Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13: 151–177. doi: 10.1146/annurev.iy.13.040195.001055
|
[13] | Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845–858. doi: 10.1038/nri933
|
[14] | Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507. doi: 10.1038/nature01152
|
[15] | Belosevic M, Finbloom DS, Van Der Meide PH, Slayter MV, Nacy CA (1989) Administration of monoclonal anti-IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 143: 266–274.
|
[16] | Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, et al. (1990) Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med 171: 115–127. doi: 10.1084/jem.171.1.115
|
[17] | Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, et al. (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194: 1497–1506. doi: 10.1084/jem.194.10.1497
|
[18] | Kane MM, Mosser DM (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166: 1141–1147.
|
[19] | Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28: 378–384. doi: 10.1016/j.it.2007.07.004
|
[20] | Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(?)Foxp3(?) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204: 285–297. doi: 10.1084/jem.20061886
|
[21] | Anderson CF, Stumhofer JS, Hunter CA, Sacks D (2009) IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol 183: 4619–4627. doi: 10.4049/jimmunol.0804024
|
[22] | Ji J, Masterson J, Sun J, Soong L (2005) CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 174: 7147–7153.
|
[23] | Nagase H, Jones KM, Anderson CF, Noben-Trauth N (2007) Despite increased CD4+Foxp3+ cells within the infection site, BALB/c IL-4 receptor-deficient mice reveal CD4+Foxp3-negative T cells as a source of IL-10 in Leishmania major susceptibility. J Immunol 179: 2435–2444.
|
[24] | Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. doi: 10.1084/jem.20061141
|
[25] | Heinzel FP, Rerko RM, Hatam F, Locksley RM (1993) IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. J Immunol 150: 3924–3931.
|
[26] | Okwor I, Liu D, Beverley SM, Uzonna JE (2009) Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proc Natl Acad Sci U S A 106: 13951–13956. doi: 10.1073/pnas.0905184106
|
[27] | Tabbara KS, Peters NC, Afrin F, Mendez S, Bertholet S, et al. (2005) Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun 73: 4714–4722. doi: 10.1128/IAI.73.8.4714-4722.2005
|
[28] | Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y (2004) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200: 201–210. doi: 10.1084/jem.20040298
|
[29] | Foss FM (2000) DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clinical Lymphoma 1: 110–116; discussion 117. doi: 10.3816/CLM.2000.n.009
|
[30] | Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, et al. (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112: 610–618. doi: 10.1182/blood-2008-01-135319
|
[31] | Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, et al. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115: 3623–3633. doi: 10.1172/JCI25947
|
[32] | Woodworth TG (1993) Early clinical studies of IL-2 fusion toxin in patients with severe rheumatoid arthritis and recent onset insulin-dependent diabetes mellitus. Clin Exp Rheumatol 11: Suppl 8S177–180.
|
[33] | Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, et al. (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110: 3192–3201. doi: 10.1182/blood-2007-06-094615
|
[34] | Knutson KL, Dang Y, Lu H, Lukas J, Almand B, et al. (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177: 84–91.
|
[35] | Bacha P, Forte SE, Perper SJ, Trentham DE, Nichols JC (1992) Anti-arthritic effects demonstrated by an interleukin-2 receptor-targeted cytotoxin (DAB486IL-2) in rat adjuvant arthritis. Eur J Immunol 22: 1673–1679. doi: 10.1002/eji.1830220702
|
[36] | Pacheco-Silva A, Bastos MG, Muggia RA, Pankewycz O, Nichols J, et al. (1992) Interleukin 2 receptor targeted fusion toxin (DAB486-IL-2) treatment blocks diabetogenic autoimmunity in non-obese diabetic mice. Eur J Immunol 22: 697–702. doi: 10.1002/eji.1830220312
|
[37] | Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, et al. (2008) Cutting edge: Experimentally induced immune activation in natural hosts of simian immunodeficiency virus induces significant increases in viral replication and CD4+ T cell depletion. J Immunol 181: 6687–6691.
|
[38] | Phillips SM, Bhopale MK, Constantinescu CS, Ciric B, Hilliard B, et al. (2007) Effect of DAB(389)IL-2 immunotoxin on the course of experimental autoimmune encephalomyelitis in Lewis rats. J Neurol Sci 263: 59–69. doi: 10.1016/j.jns.2007.05.032
|
[39] | Ramadan MA, Gabr NS, Bacha P, Gunzler V, Phillips SM (1995) Suppression of immunopathology in schistosomiasis by interleukin-2-targeted fusion toxin, DAB389IL-2. I. Studies of in vitro and in vivo efficacy. Cell Immunol 166: 217–226. doi: 10.1006/cimm.1995.9976
|
[40] | Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99: 97–103. doi: 10.1006/expr.2001.4656
|
[41] | Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174: 5444–5455.
|
[42] | Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, et al. (2008) FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2?/?gammaC?/? mice in vivo. Blood 112: 2858–2868. doi: 10.1182/blood-2008-03-145946
|
[43] | Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, et al. (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120: 2723–2733. doi: 10.1002/ijc.22617
|
[44] | O'Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7: 425–428. doi: 10.1038/nri2097
|
[45] | Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28: 582–592. doi: 10.1097/01.cji.0000175468.19742.10
|
[46] | Vaclavkova P, Cao Y, Wu LK, Michalek J, Vitetta ES (2006) A comparison of an anti-CD25 immunotoxin, Ontak and anti-CD25 microbeads for their ability to deplete alloreactive T cells in vitro. Bone Marrow Transplant 37: 559–567. doi: 10.1038/sj.bmt.1705286
|
[47] | Heinzel FP, Rerko RM, Hujer AM, Maier RA Jr (1998) Increased capacity for interleukin-2 synthesis parallels disease progression in mice infected with Leishmania major. Infect Immun 66: 4537–4540.
|
[48] | Mazingue C, Cottrez-Detoeuf F, Louis J, Kweider M, Auriault C, et al. (1989) In vitro and in vivo effects of interleukin 2 on the protozoan parasite leishmania. Eur J Immunol 19: 487–491. doi: 10.1002/eji.1830190312
|
[49] | Bodas M, Jain N, Awasthi A, Martin S, Penke Loka RK, et al. (2006) Inhibition of IL-2 induced IL-10 production as a principle of phase-specific immunotherapy. J Immunol 177: 4636–4643.
|
[50] | Murray HW, Miralles GD, Stoeckle MY, McDermott DF (1993) Role and effect of IL-2 in experimental visceral leishmaniasis. J Immunol 151: 929–938.
|
[51] | Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4: 665–674. doi: 10.1038/nri1435
|
[52] | Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, et al. (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103: 5941–5946. doi: 10.1073/pnas.0601335103
|
[53] | Oh U, Blevins G, Griffith C, Richert N, Maric D, et al. (2009) Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch Neurol 66: 471–479. doi: 10.1001/archneurol.2009.16
|
[54] | Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, et al. (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma [see comments]. J Clin Invest 91: 1644–1648. doi: 10.1172/JCI116372
|
[55] | Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400. doi: 10.1038/nri821
|