全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Enhancement of Protective Immunity during Experimental Leishmaniasis

DOI: 10.1371/journal.pntd.0001316

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Leishmaniasis remains a significant cause of morbidity and mortality in the tropics. Available therapies are problematic due to toxicity, treatment duration and emerging drug resistance. Mouse models of leishmaniasis have demonstrated that disease outcome depends critically on the balance between effector and regulatory CD4+ T cell responses, something mirrored in descriptive studies of human disease. Recombinant IL-2/diphtheria toxin fusion protein (rIL-2/DTx), a drug that is FDA-approved for the treatment of cutaneous T cell lymphoma, has been reported to deplete regulatory CD4+ T cells. Methodology/Principal Findings We investigated the potential efficacy of rIL-2/DTx as adjunctive therapy for experimental infection with Leishmania major. Treatment with rIL-2/DTx suppressed lesional regulatory T cell numbers and was associated with significantly increased antigen-specific IFN-γ production, enhanced lesion resolution and decreased parasite burden. Combined administration of rIL-2/DTx and sodium stibogluconate had additive biological and therapeutic effects, allowing for reduced duration or dose of sodium stibogluconate therapy. Conclusions/Significance These data suggest that pharmacological suppression of immune counterregulation using a commercially available drug originally developed for cancer therapy may have practical therapeutic utility in leishmaniasis. Rational reinvestigation of the efficacy of drugs approved for other indications in experimental models of neglected tropical diseases has promise in providing new candidates to the drug discovery pipeline.

References

[1]  Herwaldt BL (1999) Leishmaniasis. Lancet 354: 1191–1199. doi: 10.1016/S0140-6736(98)10178-2
[2]  Reithinger R (2008) Leishmaniases' burden of disease: ways forward for getting from speculation to reality. PLoS Negl Trop Dis 2: e285. doi: 10.1371/journal.pntd.0000285
[3]  Karp CL, Neva FA (1999) Tropical infectious diseases in human immunodeficiency virus-infected patients. Clin Infect Dis 28: 947–963; quiz 964–945. doi: 10.1086/514745
[4]  Sundar S, Chakravarty J, Agarwal D, Rai M, Murray HW (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362: 504–512. doi: 10.1056/NEJMoa0903627
[5]  Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19: 111–126. doi: 10.1128/CMR.19.1.111-126.2006
[6]  Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen JA, et al. (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis 5: 763–774. doi: 10.1016/S1473-3099(05)70296-6
[7]  Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80: 580–582.
[8]  Sundar S, More DK, Singh MK, Singh VP, Sharma S, et al. (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clinical Infectious Diseases 31: 1104–1107. doi: 10.1086/318121
[9]  Velez ID, Colmenares LM, Munoz CA (2009) Two cases of visceral leishmaniasis in Colombia resistant to meglumine antimonial treatment. Rev Inst Med Trop Sao Paulo 51: 231–236. doi: 10.1590/S0036-46652009000400011
[10]  Maurer M, Dondji B, von Stebut E (2009) What determines the success or failure of intracellular cutaneous parasites? Lessons learned from leishmaniasis. Med Microbiol Immunol 198: 137–146. doi: 10.1007/s00430-009-0114-9
[11]  Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213: 159–179. doi: 10.1111/j.1600-065X.2006.00432.x
[12]  Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13: 151–177. doi: 10.1146/annurev.iy.13.040195.001055
[13]  Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845–858. doi: 10.1038/nri933
[14]  Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507. doi: 10.1038/nature01152
[15]  Belosevic M, Finbloom DS, Van Der Meide PH, Slayter MV, Nacy CA (1989) Administration of monoclonal anti-IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 143: 266–274.
[16]  Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, et al. (1990) Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med 171: 115–127. doi: 10.1084/jem.171.1.115
[17]  Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, et al. (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194: 1497–1506. doi: 10.1084/jem.194.10.1497
[18]  Kane MM, Mosser DM (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166: 1141–1147.
[19]  Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28: 378–384. doi: 10.1016/j.it.2007.07.004
[20]  Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(?)Foxp3(?) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204: 285–297. doi: 10.1084/jem.20061886
[21]  Anderson CF, Stumhofer JS, Hunter CA, Sacks D (2009) IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol 183: 4619–4627. doi: 10.4049/jimmunol.0804024
[22]  Ji J, Masterson J, Sun J, Soong L (2005) CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 174: 7147–7153.
[23]  Nagase H, Jones KM, Anderson CF, Noben-Trauth N (2007) Despite increased CD4+Foxp3+ cells within the infection site, BALB/c IL-4 receptor-deficient mice reveal CD4+Foxp3-negative T cells as a source of IL-10 in Leishmania major susceptibility. J Immunol 179: 2435–2444.
[24]  Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. doi: 10.1084/jem.20061141
[25]  Heinzel FP, Rerko RM, Hatam F, Locksley RM (1993) IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. J Immunol 150: 3924–3931.
[26]  Okwor I, Liu D, Beverley SM, Uzonna JE (2009) Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proc Natl Acad Sci U S A 106: 13951–13956. doi: 10.1073/pnas.0905184106
[27]  Tabbara KS, Peters NC, Afrin F, Mendez S, Bertholet S, et al. (2005) Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun 73: 4714–4722. doi: 10.1128/IAI.73.8.4714-4722.2005
[28]  Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y (2004) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200: 201–210. doi: 10.1084/jem.20040298
[29]  Foss FM (2000) DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clinical Lymphoma 1: 110–116; discussion 117. doi: 10.3816/CLM.2000.n.009
[30]  Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, et al. (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112: 610–618. doi: 10.1182/blood-2008-01-135319
[31]  Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, et al. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115: 3623–3633. doi: 10.1172/JCI25947
[32]  Woodworth TG (1993) Early clinical studies of IL-2 fusion toxin in patients with severe rheumatoid arthritis and recent onset insulin-dependent diabetes mellitus. Clin Exp Rheumatol 11: Suppl 8S177–180.
[33]  Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, et al. (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110: 3192–3201. doi: 10.1182/blood-2007-06-094615
[34]  Knutson KL, Dang Y, Lu H, Lukas J, Almand B, et al. (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177: 84–91.
[35]  Bacha P, Forte SE, Perper SJ, Trentham DE, Nichols JC (1992) Anti-arthritic effects demonstrated by an interleukin-2 receptor-targeted cytotoxin (DAB486IL-2) in rat adjuvant arthritis. Eur J Immunol 22: 1673–1679. doi: 10.1002/eji.1830220702
[36]  Pacheco-Silva A, Bastos MG, Muggia RA, Pankewycz O, Nichols J, et al. (1992) Interleukin 2 receptor targeted fusion toxin (DAB486-IL-2) treatment blocks diabetogenic autoimmunity in non-obese diabetic mice. Eur J Immunol 22: 697–702. doi: 10.1002/eji.1830220312
[37]  Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, et al. (2008) Cutting edge: Experimentally induced immune activation in natural hosts of simian immunodeficiency virus induces significant increases in viral replication and CD4+ T cell depletion. J Immunol 181: 6687–6691.
[38]  Phillips SM, Bhopale MK, Constantinescu CS, Ciric B, Hilliard B, et al. (2007) Effect of DAB(389)IL-2 immunotoxin on the course of experimental autoimmune encephalomyelitis in Lewis rats. J Neurol Sci 263: 59–69. doi: 10.1016/j.jns.2007.05.032
[39]  Ramadan MA, Gabr NS, Bacha P, Gunzler V, Phillips SM (1995) Suppression of immunopathology in schistosomiasis by interleukin-2-targeted fusion toxin, DAB389IL-2. I. Studies of in vitro and in vivo efficacy. Cell Immunol 166: 217–226. doi: 10.1006/cimm.1995.9976
[40]  Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99: 97–103. doi: 10.1006/expr.2001.4656
[41]  Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174: 5444–5455.
[42]  Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, et al. (2008) FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2?/?gammaC?/? mice in vivo. Blood 112: 2858–2868. doi: 10.1182/blood-2008-03-145946
[43]  Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, et al. (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120: 2723–2733. doi: 10.1002/ijc.22617
[44]  O'Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7: 425–428. doi: 10.1038/nri2097
[45]  Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28: 582–592. doi: 10.1097/01.cji.0000175468.19742.10
[46]  Vaclavkova P, Cao Y, Wu LK, Michalek J, Vitetta ES (2006) A comparison of an anti-CD25 immunotoxin, Ontak and anti-CD25 microbeads for their ability to deplete alloreactive T cells in vitro. Bone Marrow Transplant 37: 559–567. doi: 10.1038/sj.bmt.1705286
[47]  Heinzel FP, Rerko RM, Hujer AM, Maier RA Jr (1998) Increased capacity for interleukin-2 synthesis parallels disease progression in mice infected with Leishmania major. Infect Immun 66: 4537–4540.
[48]  Mazingue C, Cottrez-Detoeuf F, Louis J, Kweider M, Auriault C, et al. (1989) In vitro and in vivo effects of interleukin 2 on the protozoan parasite leishmania. Eur J Immunol 19: 487–491. doi: 10.1002/eji.1830190312
[49]  Bodas M, Jain N, Awasthi A, Martin S, Penke Loka RK, et al. (2006) Inhibition of IL-2 induced IL-10 production as a principle of phase-specific immunotherapy. J Immunol 177: 4636–4643.
[50]  Murray HW, Miralles GD, Stoeckle MY, McDermott DF (1993) Role and effect of IL-2 in experimental visceral leishmaniasis. J Immunol 151: 929–938.
[51]  Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4: 665–674. doi: 10.1038/nri1435
[52]  Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, et al. (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103: 5941–5946. doi: 10.1073/pnas.0601335103
[53]  Oh U, Blevins G, Griffith C, Richert N, Maric D, et al. (2009) Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch Neurol 66: 471–479. doi: 10.1001/archneurol.2009.16
[54]  Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, et al. (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma [see comments]. J Clin Invest 91: 1644–1648. doi: 10.1172/JCI116372
[55]  Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400. doi: 10.1038/nri821

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133