全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能驱动隐性知识共享变革——以DeepSeek为例
AI-Driven Transformation of Tacit Knowledge Sharing—A Case Study of DeepSeek

DOI: 10.12677/ass.2025.147649, PP. 573-583

Keywords: 设计教育,隐性知识,生成式人工智能,DeepSeek
Design Education
, Tacit Knowledge, Generative AI, DeepSeek

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:回应科学认知领域中隐性知识私有性加剧的群体认知差距问题,探索生成式人工智能破解知识传递壁垒的技术赋能路径。方法:聚焦推理链可视化核心机制,解析以DeepSeek为代表的生成式工具对个体创新思维的“解构–复用”逻辑;依托用户规模优势,阐释群体隐性认知向可学习思维范式转化的实现路径。结果:该技术通过暴露“最佳决策”推理黑箱、沉淀优质用户思维模板,有效压缩环境差异导致的认知–解题能力差,为跨群体思路共享提供技术中介。结论:生成式AI驱动的隐性知识显性化,重构知识民主化底层逻辑,为教育公平场景下的认知普惠提供突破性实践范式。
Objective: To address the cognitive gap aggravated by the privacy of tacit knowledge in scientific cognition, this study aims to explore the technical empowerment path of generative artificial intelligence (AI) in breaking knowledge transmission barriers. Method: Firstly, focusing on the core mechanism of reasoning chain visualization, it deciphers the “deconstruction-reuse” logic of generative tools (taking DeepSeek as a representative) for individuals’ innovative thinking. Then, leveraging the large-scale user advantage, it expounds the realization path of transforming group-based tacit cognition into shareable thinking paradigms. Results: This technology exposes the “best-decision” reasoning black box and precipitates high-quality users’ thinking templates, effectively narrowing the cognitive and problem-solving ability gap caused by environmental differences and providing a technical medium for cross-group thinking sharing. Conclusion: The explicitation of tacit knowledge driven by generative AI reconstructs the underlying logic of knowledge democratization, offering a breakthrough practical paradigm for cognitive inclusiveness in educational equity scenarios.

References

[1]  刘晓春. 从柳宗悦到柳宗理——日本“民艺运动”的现代性及其启示[J]. 民族艺术, 2018(1): 83-90.
[2]  庄晓敏, 杜波. “传承∙借鉴∙启发”教学模式在“中国园林专题设计”课程思政教学中的实践研究[J]. 园林, 2025, 42(4): 129-137.
[3]  朱宁. “造屋”与“造物”: 制造业视野下的建造过程研究[D]: [博士学位论文]. 北京: 清华大学, 2015.
[4]  李莹. 浅析日本陶瓷产品设计特点[J]. 陶瓷研究, 2023, 38(2): 78-80.
[5]  Collins, H. (2010) Tacit and Explicit Knowledge. University of Chicago Press.
https://doi.org/10.7208/chicago/9780226113821.001.0001
[6]  [日]野中郁次郎, 竹内弘高. 知识创造的企业: 领先企业持续创新的动力[M]. 吴庆海, 译. 北京: 人民邮电出版社, 2019.
[7]  Szulanski, G. (1996) Exploring Internal Stickiness: Impediments to the Transfer of Best Practice within the Firm. Strategic Management Journal, 17, 27-43.
https://doi.org/10.1002/smj.4250171105
[8]  [美]J∙莱夫, E∙温格. 情境学习: 合法的边缘性参与[M]. 王文静, 庆海, 译. 上海: 华东师范大学出版社, 2004.
[9]  [英]迈克尔∙波兰尼. 个人知识[M]. 许泽民, 译. 贵阳: 贵州人民出版社, 2000.
[10]  郭蕾蕾. 生成式人工智能驱动教育变革: 机制、风险及应对——以DeepSeek为例[Z/OL]. 重庆高教研究, 2025-03-10.
https://link.cnki.net/urlid/50.1028.G4.20250310.1548.002.pdf, 2025-03-24.
[11]  肖克炎, 李程, 唐瑞, 等. 大数据智能预测评价[J/OL]. 地学前缘, 1-18.
https://doi.org/10.13745/j.esf.sf.2025.4.58, 2025-07-16.
[12]  蔡恒进. 基于DeepSeek的行业洞察与人工智能产业跃迁[J]. 人民论坛, 2025(7): 36-41.
[13]  雷浩, 马玉林. DeepSeek赋能基础教育高质量发展(笔谈) [J]. 天津师范大学学报(基础教育版), 2025, 26(3): 9-12.
[14]  [法]莫里斯∙梅洛-庞蒂. 知觉现象学[M]. 姜志辉, 译. 北京: 商务印书馆, 2001.
[15]  余越凡, 赵志群. AIGC时代数字人赋能人机协同学习: 价值、框架与路径[J]. 远程教育杂志, 2025, 43(2): 45-52.
[16]  颜志科. 模因论视角下隐喻的生成、发展与传播[J]. 外语学刊, 2011(4): 24-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133