全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Morita Equivalence for the A -Algebras

DOI: 10.4236/apm.2025.157023, PP. 483-490

Keywords: A-Infinity, Homology, Inclusion Map, Trace Map

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper explores the foundational and advanced aspects of A -algebras. We present a comprehensive study of A -algebras and their homology, emphasizing the construction of long exact sequences in simplicial homology and their implications for short exact sequences of A -algebras. Furthermore, we investigate the trace and inclusion maps in matrix A -algebras, proving their mutual invertibility and highlighting their role in preserving homological properties. These results underscore the utility of A -algebras in simplifying complex algebraic systems while maintaining essential structural invariants.

References

[1]  Stasheff, J.D. (1963) Homotopy Associativity of H-Spaces. II. Transactions of the American Mathematical Society, 108, 293-312.
https://doi.org/10.2307/1993609
[2]  Noreldeen Mohamed, A.H. (2020) Perturbation Differential A-Infinity Algebra. Applied Mathematics & Information Sciences, 14, 447-451.
https://doi.org/10.18576/amis/140311
[3]  Noreldeen, A.H. (2019) On the Hochschild Cohomology Theory of A-Algebra. Scientific African, 5, e00115.
https://doi.org/10.1016/j.sciaf.2019.e00115
[4]  Keller, B. (2006) A-Infinity Algebras, Modules and Functor Categories. Contemporary Mathematices, 406, 67-94.
https://doi.org/10.1090/conm/406/07654
[5]  Noreldeen, A.H. and Gh Gouda, Y. (2013) On the Simplicial Cohomology Theory of Algebra. Life Science Journal, 10, 2639-2644.
[6]  Kozae, M., Quota, S.A.A. and Noreldeen, A.H. (2022) The Relative (Co)Homology Theory through Operator Algebras. Mathematics and Statistics, 10, 468-476.
https://doi.org/10.13189/ms.2022.100302
[7]  Noreldeen, A.H. (2012) On the Homology Theory of Operator Algebras. International Journal of Mathematics and Mathematical Sciences, 2012, Article ID: 368527.
https://doi.org/10.1155/2012/368527
[8]  Adhikari, M.R. (2016) Homology and Cohomology Theories. In: Adhikari, M.R., Ed., Basic Algebraic Topology and Its Applications, Springer, 347-406.
https://doi.org/10.1007/978-81-322-2843-1_10
[9]  Lapin, S.V. (2002) D-Differential A-Algebras and Spectral Sequences. Sbornik: Mathematics, 193, 119-142.
https://doi.org/10.1070/sm2002v193n01abeh000623
[10]  Keller, B. (2001) Introduction to A-Infinity Algebras and Modules. Homology, Homotopy and Applications, 3, 1-35.
https://doi.org/10.4310/hha.2001.v3.n1.a1
[11]  Hochschild, G. (1945) On the Cohomology Groups of an Associative Algebra. The Annals of Mathematics, 46, 58-67.
https://doi.org/10.2307/1969145
[12]  Kadeishvili, T.V. (1988) The-Algebra Structure and the Hochschild and Harrison Cohomologies. arXiv: math/0210331.
https://doi.org/10.48550/arXiv.math/0210331
[13]  Cartan, H. and Eilenberg, S. (1956) Homological Algebra. Princeton University Press.
https://doi.org/10.1515/9781400883844

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133