全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新型咔唑基水相人工光捕获体系
A Novel Carbazolyl Aqueous Artificial Light-Harvesting System

DOI: 10.12677/amc.2025.133030, PP. 273-280

Keywords: 超分子自组装,能量转移,人工光捕获,主–客体相互作用
Supramolecular Self-Assembly
, Energy Transfer, Artificial Light-Harvesting, Host-Guest Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用水溶性羧酸盐柱[5]芳烃(WH5)作为大环主体分子,与具有聚集诱导发光(AIE)活性的咔唑基衍生物(CPD)通过主–客体相互作用形成稳定的WH5-CPD复合物。该WH5-CPD复合物通过超分子自组装过程在水相中构筑了显著的WH5-CPD纳米颗粒聚集体,并展现出独特的双功能特性:一方面,基于CPD自身的AIE荧光特性,聚集后的WH5-CPD可充当初级能量供体;另一方面,凭借WH5与CPD组装形成的空腔结构实现了荧光桃红(PHB)染料分子的高效包载,最终构建出具有层级能量传递功能的WH5-CPD-PHB三元光捕获系统。实验数据表明,当体系中CPD与PHB的摩尔比优化至250:1时,实现了高达43%的荧光共振能量转移效率,同时获得23.2的天线效应值,这两个关键指标均显著优于传统光捕获体系,为开发高效水相人工光捕获系统提供了新的策略。
In this paper, a water-soluble carboxylate-pillar [5] arene (WH5) was innovatively used as a macrocyclic host molecule, and a photoactive carbazole-based derivative (CPD) with aggregation-induced emission (AIE) ability was used as a guest molecule, which was interacted with the host to form a stable WH5-CPD complex. The complex constructs a regular nanoparticle aggregates structure in the aqueous phase through the self-assembly process, showing unique bifunctional properties: on the one hand, the aggregated WH5-CPD nanoparticles could act as a primary energy donor based on the AIE fluorescence characteristics of CPD, and on the other hand, the efficient encapsulation of fluorescent Phloxine (PHB) dye molecules was realized by the nano-cavity structure of WH5-CPD assembly, finally resulting in the successful construction of the ternary WH5-CPD-PHB light-harvesting system with hierarchical energy transfer function. The experimental data showed that when the molar ratio of CPD to PHB in the system was optimized to 250:1, the fluorescence resonance energy transfer efficiency was up to 43%, and the antenna effect value of 23.2 was obtained, which was significantly better than that of traditional light-harvesting system, providing an innovative strategy for the development of efficient aqueous artificial light-harvesting systems.

References

[1]  El-Khouly, M.E., El-Mohsnawy, E. and Fukuzumi, S. (2017) Solar Energy Conversion: From Natural to Artificial Photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 36-83.
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
[2]  Zhang, C. and Kuang, T. (2018) A New Milestone for Photoynthesis. National Science Review, 5, 444-445.
https://doi.org/10.1093/nsr/nwx087
[3]  Chen, X.M., Chen X., Hou, X.F., Zhang, S., Chen, D. and Li, Q. (2023) Self-Assembled Supramolecular Artificial Light-Harvesting Nanosystems: Construction, Modulation, and Applications. Nanoscale Advances, 5, 1830-1852.
https://doi.org/10.1039/D2NA00934J
[4]  Ogoshi, T., Yamafuji, D., Yamagishi, T. and Brouwer, A.M. (2013) Förster Resonance Energy Transfer by Formation of a Mechanically Interlocked [2]Rotaxane. Chemical Communications, 49, 5468-5470.
https://doi.org/10.1039/c3cc42612b
[5]  Wang, Y., Han, N., Li, X., Wang, R. and Xing, L. (2022) Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS Applied Materials & Interfaces, 14, 45734-45741.
https://doi.org/10.1021/acsami.2c14168
[6]  Sun, G., Li, M., Cai, L., Wang, D., Cui Y., Hu, Y., Sun, T., Zhu, J. and Tang, Y. (2023) Water-Soluble Phosphate-pillar[5]Arene (WPP5)-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation. Journal of Colloid and Interface Science, 641, 803-811.
https://doi.org/10.1016/j.jcis.2023.03.109
[7]  Zhang, D., Yu, W., Li, S., Xia, Y., Li, X., Li, Y. and Yi, T. (2021) Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis. Journal of the American Chemical Society, 143, 1313-1317.
https://doi.org/10.1021/jacs.0c12522
[8]  Li, M. (2024) A Novel Naphthalenyl-Phenyl-Acrylonitrile-Based Aqueous Artificial Light-Harvesting System. Journal of Organic Chemistry Research, 12, 439-445.
https://doi.org/10.12677/jocr.2024.123041
[9]  Hao, M., Sun, G., Zuo, M., Xu, Z., Chen, Y., Hu, X., et al. (2019) A Supramolecular Artificial Light‐Harvesting System with Two‐Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie International Edition, 59, 10095-10100.
https://doi.org/10.1002/anie.201912654
[10]  Zhang, Q., Cui, F., Dang, X., Wang, Q., Li, Z., Sun, X., et al. (2024) Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging. ChemistryA European Journal, 30, e202401426.
https://doi.org/10.1002/chem.202401426
[11]  Sun, G., Li, M., Li, J., Feng, J., Yan, Z., Sun, Y., Pu, L., Zhu, J., Tang, Y. and Yao, Y. (2025) Enhanced Emission in a Supramolecular Artificial Light-Harvesting System for a Photocatalytic Thiol-Ene Reaction. Chemical Communications, 61, 6360-6363.
https://doi.org/10.1039/D5CC00339C
[12]  Sun, G., Li, M., Cai, L., Zhu, J., Tang, Y. and Yao, Y. (2024) Carbazole-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation Reaction. Chemical Communications, 60, 1412-1415.
https://doi.org/10.1039/d3cc05405e
[13]  Li, M., Wang, R., Xia, Y., Fu, Y., Wu, L., Sun, G., et al. (2025) Bis‐Naphthylacrylonitrile‐Based Supramolecular Artificial Light‐Harvesting System for White Light Emission. Macromolecular Rapid Communications, 46, Article 2400929.
https://doi.org/10.1002/marc.202400929
[14]  Teng, K., An, Z., Niu, L. and Yang, Q. (2023) A Supramolecular Artificial Light-Harvesting System with Excitation Energy and Electron Transfer. ACS Materials Letters, 6, 290-297.
https://doi.org/10.1021/acsmaterialslett.3c01315
[15]  Ma, C., Han, N., Wang, Y., Liu, H., Wang, R., Yu, S., et al. (2023) Construction and Application of the Polyelectrolyte-Based Sequential Artificial Light-Harvesting System. Chinese Chemical Letters, 34, Article 108081.
https://doi.org/10.1016/j.cclet.2022.108081
[16]  Xiao, T., Bao, C., Zhang, L., Diao, K., Ren, D., Wei, C., et al. (2022) An Artificial Light-Harvesting System Based on the ESIPT-AIE-FRET Triple Fluorescence Mechanism. Journal of Materials Chemistry A, 10, 8528-8534.
https://doi.org/10.1039/d2ta00277a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133