|
中国东部地区鱼类的纬向分布规律和海陆差异
|
Abstract:
研究基于FishBase数据,分析了中国东部沿海地区鱼类多样性和体型随纬度变化的分布规律。研究将鱼类分为淡水鱼和海水鱼两类,统计了不同省份及纬度单元内的属种数和最大体长,并利用Origin和ArcGIS进行可视化和水域面积分析。结果显示:1) 鱼类多样性与生存空间相关性较差;2) 鱼类多样性随纬度增加而减少,最大体长随纬度增加而增长,符合兰伯特法则和伯格曼法则;3) 同纬度下海洋鱼类体型大于淡水鱼类,且随着纬度降低,海水鱼类多样性增加速度显著高于淡水鱼类。研究预测未来气候变暖背景下,中国东部沿海鱼类体型将缩小,30?~50?N地区鱼类多样性可能显著增加,海洋鱼类增幅高于淡水鱼类。
The study analyzed the distribution patterns of fish diversity and body size across latitudes in China’s eastern coastal regions using data from FishBase. Fish were categorized into freshwater and marine groups. The study counted the number of genera and species, as well as maximum body length, across provinces and latitudinal units. Data visualization and water area analysis were performed using Origin and ArcGIS. Results showed: 1) Weak correlation between fish diversity and habitat area; 2) Fish diversity decreases with increasing latitude, while maximum body length increases with latitude, consistent with Rapport’s rule and Bergmann’s rule; 3) Marine fish are larger than freshwater fish at the same latitude, and marine fish diversity increases more rapidly than freshwater fish as latitude decreases. Under future climate warming, it is predicted that fish body size in China’s eastern coastal region will decrease, but fish diversity in the 30?~50?N area may increase significantly, with marine fish diversity increasing more than freshwater fish.
[1] | IPCC (2022) Climate Change 2022: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. |
[2] | Borregaard, M.K. and Rahbek, C. (2010) Causality of the Relationship between Geographic Distribution and Species Abundance. The Quarterly Review of Biology, 85, 3-25. https://doi.org/10.1086/650265 |
[3] | Tian, L. and Benton, M.J. (2020) Predicting Biotic Responses to Future Climate Warming with Classic Ecogeographic Rules. Current Biology, 30, R744-R749. https://doi.org/10.1016/j.cub.2020.06.003 |
[4] | Pintor, A.F.V., Schwarzkopf, L. and Krockenberger, A.K. (2015) Rapoport’s Rule: Do Climatic Variability Gradients Shape Range Extent? Ecological Monographs, 85, 643-659. https://doi.org/10.1890/14-1510.1 |
[5] | Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., et al. (2007) Evolution and the Latitudinal Diversity Gradient: Speciation, Extinction and Biogeography. Ecology Letters, 10, 315-331. https://doi.org/10.1111/j.1461-0248.2007.01020.x |
[6] | Chaudhary, C., Saeedi, H. and Costello, M.J. (2016) Bimodality of Latitudinal Gradients in Marine Species Richness. Trends in Ecology & Evolution, 31, 670-676. https://doi.org/10.1016/j.tree.2016.06.001 |
[7] | Blackburn, T.M., Gaston, K.J. and Loder, N. (1999) Geographic Gradients in Body Size: A Clarification of Bergmann’s Rule. Diversity and Distributions, 5, 165-174. https://doi.org/10.1046/j.1472-4642.1999.00046.x |
[8] | He, J., Tu, J., Yu, J. and Jiang, H. (2023) A Global Assessment of Bergmann’s Rule in Mammals and Birds. Global Change Biology, 29, 5199-5210. https://doi.org/10.1111/gcb.16860 |
[9] | Belk, M.C. and Houston, D.D. (2002) Bergmann’s Rule in Ectotherms: A Test Using Freshwater Fishes. The American Naturalist, 160, 803-808. https://doi.org/10.1086/343880 |
[10] | Solokas, M.A., Feiner, Z.S., Al‐Chokachy, R., Budy, P., DeWeber, J.T., Sarvala, J., et al. (2023) Shrinking Body Size and Climate Warming: Many Freshwater Salmonids Do Not Follow the Rule. Global Change Biology, 29, 2478-2492. https://doi.org/10.1111/gcb.16626 |
[11] | Salewski, V. and Watt, C. (2016) Bergmann’s Rule: A Biophysiological Rule Examined in Birds. Oikos, 126, 161-172. https://doi.org/10.1111/oik.03698 |
[12] | Shan, X., Jin, X., Zhou, Z. and Dai, F. (2011) Fish Community Diversity in the Middle Continental Shelf of the East China Sea. Chinese Journal of Oceanology and Limnology, 29, 1199-1208. https://doi.org/10.1007/s00343-011-0321-2 |
[13] | Mendenhall, E., Hendrix, C., Nyman, E., Roberts, P.M., Hoopes, J.R., Watson, J.R., et al. (2020) Climate Change Increases the Risk of Fisheries Conflict. Marine Policy, 117, Article ID: 103954. https://doi.org/10.1016/j.marpol.2020.103954 |
[14] | Hiddink, J.G. and Ter Hofstede, R. (2007) Climate Induced Increases in Species Richness of Marine Fishes. Global Change Biology, 14, 453-460. https://doi.org/10.1111/j.1365-2486.2007.01518.x |
[15] | Tseng, C., Hsieh, C. and Kuo, Y. (2020) Automatic Measurement of the Body Length of Harvested Fish Using Convolutional Neural Networks. Biosystems Engineering, 189, 36-47. https://doi.org/10.1016/j.biosystemseng.2019.11.002 |
[16] | 代云云, 袁永明, 袁媛, 张红燕. 探研淡水鱼养殖业产业的绿色发展路径[J]. 吉林农业, 2019(17): 75-90. |
[17] | 金显仕, 田洪林, 单秀娟. 我国近海渔业资源研究历程及展望[J]. 水产学报, 2023, 47(11): 122-131. |
[18] | He, D., Sui, X., Sun, H., Tao, J., Ding, C., Chen, Y., et al. (2020) Diversity, Pattern and Ecological Drivers of Freshwater Fish in China and Adjacent Areas. Reviews in Fish Biology and Fisheries, 30, 387-404. https://doi.org/10.1007/s11160-020-09600-4 |
[19] | 朱紫薇, 伍大清, 姜启军. 中国特色淡水鱼产业国际竞争力分析[J]. 中国渔业经济, 2023, 41(2): 50-62. |
[20] | Acevedo, A.A., Palma, R.E. and Olalla-Tárraga, M.Á. (2022) Ecological and Evolutionary Trends of Body Size in Pristimantis Frogs, the World’s Most Diverse Vertebrate Genus. Scientific Reports, 12, Article No. 18106. https://doi.org/10.1038/s41598-022-22181-5 |
[21] | Wellington, C.M., Harvey, E.S., Wakefield, C.B., Abdo, D. and Newman, S.J. (2021) Latitude, Depth and Environmental Variables Influence Deepwater Fish Assemblages off Western Australia. Journal of Experimental Marine Biology and Ecology, 539, Article ID: 151539. https://doi.org/10.1016/j.jembe.2021.151539 |
[22] | Mannion, P.D., Upchurch, P., Benson, R.B.J. and Goswami, A. (2014) The Latitudinal Biodiversity Gradient through Deep Time. Trends in Ecology & Evolution, 29, 42-50. https://doi.org/10.1016/j.tree.2013.09.012 |
[23] | Fenton, I.S., Aze, T., Farnsworth, A., Valdes, P. and Saupe, E.E. (2023) Origination of the Modern-Style Diversity Gradient 15 Million Years Ago. Nature, 614, 708-712. https://doi.org/10.1038/s41586-023-05712-6 |
[24] | Fernández-Torres, F., Martínez, P.A. and Olalla-Tárraga, M.Á. (2018) Shallow Water Ray-Finned Marine Fishes Follow Bergmann’s Rule. Basic and Applied Ecology, 33, 99-110. https://doi.org/10.1016/j.baae.2018.09.002 |
[25] | Saunders, R.A. and Tarling, G.A. (2018) Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule. The American Naturalist, 191, 343-351. https://doi.org/10.1086/695767 |
[26] | Rypel, A.L. (2014) The Cold-Water Connection: Bergmann’s Rule in North American Freshwater Fishes. The American Naturalist, 183, 147-156. https://doi.org/10.1086/674094 |
[27] | Foster, J.B. (1964) Evolution of Mammals on Islands. Nature, 202, 234-235. https://doi.org/10.1038/202234a0 |
[28] | Meiri, S., Cooper, N. and Purvis, A. (2007) The Island Rule: Made to Be Broken? Proceedings of the Royal Society B: Biological Sciences, 275, 141-148. https://doi.org/10.1098/rspb.2007.1056 |
[29] | Raftery, A.E., Zimmer, A., Frierson, D.M.W., Startz, R. and Liu, P. (2017) Less than 2˚C Warming by 2100 Unlikely. Nature Climate Change, 7, 637-641. https://doi.org/10.1038/nclimate3352 |
[30] | Alfonso, S., Gesto, M. and Sadoul, B. (2020) Temperature Increase and Its Effects on Fish Stress Physiology in the Context of Global Warming. Journal of Fish Biology, 98, 1496-1508. https://doi.org/10.1111/jfb.14599 |
[31] | Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M.F.P., Huijbregts, M.A.J., et al. (2021) Threats of Global Warming to the World’s Freshwater Fishes. Nature Communications, 12, Article No. 1701. https://doi.org/10.1038/s41467-021-21655-w |
[32] | Dahms, C. and Killen, S.S. (2023) Temperature Change Effects on Marine Fish Range Shifts: A Meta‐Analysis of Ecological and Methodological Predictors. Global Change Biology, 29, 4459-4479. https://doi.org/10.1111/gcb.16770 |
[33] | Hu, W., Du, J., Su, S., Tan, H., Yang, W., Ding, L., et al. (2022) Effects of Climate Change in the Seas of China: Predicted Changes in the Distribution of Fish Species and Diversity. Ecological Indicators, 134, Article ID: 108489. https://doi.org/10.1016/j.ecolind.2021.108489 |
[34] | Su, G., Logez, M., Xu, J., Tao, S., Villéger, S. and Brosse, S. (2021) Human Impacts on Global Freshwater Fish Biodiversity. Science, 371, 835-838. https://doi.org/10.1126/science.abd3369 |