|
计及流固耦合的受电弓气动特性研究
|
Abstract:
为了研究受电弓流固耦合作用对受电弓气动特性影响,基于计算流体动力学理论,建立受电弓的空气动力学模型,采用雷诺时均方法(RANS),模拟受电弓的非定常气动力;利用有限元分析协同仿真平台,建立受电弓的结构动力学模型,并通过系统耦合求解器,完成流体压力和结构位移计算数据交换,实现受电弓的双向流固耦合分析。研究结果表明:流固耦合作用主要引起受电弓上框架升力增大和下臂杆升力减小,对受电弓其他部件的升、阻力影响相对较小。上框架、下臂杆气动升力受流固耦合作用影响较为明显,表明上框架与下臂杆的结构柔性与非定常流场存在较强的耦合机制。
In order to study the effects of fluid-solid coupling on the aerodynamic characteristics of the pantograph, the aerodynamic model of pantograph was established based on the theory of computational fluid dynamics. The Reynolds Average Navier-Stokes (RANS) was applied to simulate the unsteady aerodynamic forces of the pantograph by Fluent simulation. The structure dynamics model of pantograph was established by the Workbench co-simulation platform. The System Coupling solver was also used to complete the data transfer of fluid pressure and structure displacement to realize the bidirectional fluid-solid coupling analysis of the pantograph. The results show that the effect of fluid-solid coupling mainly causes the upper frame lift of the pantograph to increase and the lower frame lift to decrease. The effect of fluid-solid coupling has less influence on the lift and drag force of other components of the pantograph. The aerodynamic lift forces on the upper frame and lower arm are significantly influenced by fluid-structure interaction (FSI), indicating a strong coupling mechanism between the structural flexibility of these components and the unsteady flow field.
[1] | 于万聚. 高速电气化铁路接触网[M]. 成都: 西南交通大学出版社, 2003. |
[2] | 迟江峰. 400 km/h受电弓流固耦合特性仿真研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2021. |
[3] | Belloli, M., Pizzigoni, B., Ripamonti, F. and Rocchi, D. (2009) Fluid-Structure Interaction between Trains and Noise-Reduction Barriers: Numerical and Experimental Analysis. WIT Transactions on The Built Environment, 105, 49-60. https://doi.org/10.2495/fsi090051 |
[4] | Wang, H.C. and Xie, J.F. (2013) FSI Research on the Noise Barrier of High-Speed Railway in the Composite Conditions. Applied Mechanics and Materials, 307, 149-155. https://doi.org/10.4028/www.scientific.net/amm.307.149 |
[5] | Zdziebko, P., Martowicz, A. and Uhl, T. (2017) An Investigation into Multi-Domain Simulation for a Pantograph Catenary System. ITM Web of Conferences, 15, Article No. 03001. https://doi.org/10.1051/itmconf/20171503001 |
[6] | 崔涛, 张卫华, 张曙光, 等. 列车高速通过站台时的流固耦合振动研究[J]. 中国铁道科学, 2010, 31(2): 50-55. |
[7] | 崔涛, 张卫华. 侧风环境下列车高速通过站台的流固耦合振动[J]. 西南交通大学学报, 2011, 46(3): 404-408. |
[8] | 崔涛, 张卫华, 王琰. 列车高速交会流固耦合振动数值仿真分析[J]. 机车电传动, 2013(4): 1-5. |
[9] | 李田, 张继业, 李忠继, 等. 基于Fluent与Simpack的高速列车流固耦合联合仿真[J]. 计算力学学报, 2012, 29(5): 675-680. |
[10] | Li, T., Yu, M., Zhang, J. and Zhang, W. (2015) A Fast Equilibrium State Approach to Determine Interaction between Stochastic Crosswinds and High-Speed Trains. Journal of Wind Engineering and Industrial Aerodynamics, 143, 91-104. https://doi.org/10.1016/j.jweia.2015.04.002 |
[11] | 李田, 张继业, 张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报, 2012, 25(2): 138-145. |
[12] | 郭迪龙, 姚拴宝, 刘晨辉, 等. 高速列车受电弓非定常气动特性研究[J]. 铁道学报, 2012, 34(11): 16-21. |
[13] | 肖友刚, 时彧. 高速列车受电弓绝缘子的气动噪声计算及外形优化[J]. 铁道科学与工程学报, 2012, 9(6): 72-76. |
[14] | 戴志远, 李田, 周宁, 等. 上下臂杆直径对高速受电弓气动抬升力的影响[J]. 交通运输工程学报, 2022, 22(4): 210-222. |
[15] | Dai, Z., Li, T., Zhou, N., Zhang, J. and Zhang, W. (2021) Numerical Simulation and Optimization of Aerodynamic Uplift Force of a High-Speed Pantograph. Railway Engineering Science, 30, 117-128. https://doi.org/10.1007/s40534-021-00258-7 |
[16] | Yao, Y., Sun, Z., Li, G., et al. (2022) Numerical Investigation on Aerodynamic Drag and Noise of Pantographs with Modified Structures. Journal of Applied Fluid Mechanics, 15, 617-631. |
[17] | Guo, J., Tan, X., Yang, Z., Xue, Y., Shen, Y. and Wang, H. (2022) Aeroacoustic Optimization Design of the Middle and Upper Part of Pantograph. Applied Sciences, 12, Article No. 8704. https://doi.org/10.3390/app12178704 |
[18] | 胡可, 赵阳, 王钢, 等. 蒸气云爆炸作用下钢储罐动力响应的双向流固耦合分析[J]. 振动与冲击, 2018, 37(15): 199-208. |
[19] | Lu, X., Liu, Z., Song, Y., Wang, H., Zhang, J. and Wang, Y. (2017) Estimator-Based Multiobjective Robust Control Strategy for an Active Pantograph in High-Speed Railways. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232, 1064-1077. https://doi.org/10.1177/0954409717707399 |
[20] | Song, Y., Ouyang, H., Liu, Z., Mei, G., Wang, H. and Lu, X. (2017) Active Control of Contact Force for High-Speed Railway Pantograph-Catenary Based on Multi-Body Pantograph Model. Mechanism and Machine Theory, 115, 35-59. https://doi.org/10.1016/j.mechmachtheory.2017.04.014 |
[21] | 李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. |