全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

底泥氮磷释放的空间异质性及其环境驱动因素分析——以城市中小河流为例
Spatial Heterogeneity and Environmental Drivers of Nitrogen and Phosphorus Release from Sediments—Focusing on Small and Medium-Sized Urban Rivers

DOI: 10.12677/jwrr.2025.143028, PP. 265-275

Keywords: 底泥氮磷含量,上覆水水质,聚类分析,底泥释放规律
Nitrogen and Phosphorus Content in Sediment
, The Quality of Overlying Water, Cluster Analysis, Release Pattern of Sediment

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文选取了9条重要河道(水库)作为研究对象,布设22个监测点位,检测其水体和底泥的理化参数(DO、NH4-N、TN、TP等),并开展室内氮磷静态释放实验,结合综合污染指数(FF)评价底泥污染程度,运用聚类分析和Pearson相关性解析影响因素,探讨河流底泥氮磷释放的时空特征及其关键影响因素,以期为流域内源污染治理提供依据。结果表明:9条河流水体指标呈现显著空间异质性,22个样本中,S22卫星水库水体DO浓度最低(0.44 mg/L),S18大溪河水体NH4-N和TN浓度最高(分别为6.13 mg/L和8.51 mg/L),指示严重富营养化特征;底泥总氮的浓度在648.30~3849.63 mg/kg之间,总磷的含量在171.25~1073.10 mg/kg之间,含量较高,综合污染指数(FF)显示27.3%的样本处于重度污染状态;静态释放试验表明,R7-大溪河和R6-桥溪河的氮磷释放速率显著高于其他河流,其中R7-大溪河的TN释放速率高达317.1 mg/(m2·d),聚类分析显示,底泥特性、上覆水DO、外源污染输入是影响底泥氮磷释放的主要因素。
This study selects nine significant river channels (reservoirs) as research subjects, establishing 22 monitoring stations to assess the physicochemical parameters (such as DO, NH4-N, TN, TP) of their water bodies and sediments. Additionally, indoor static release experiments for nitrogen and phosphorus were conducted. By utilizing the comprehensive pollution index (FF) to evaluate the level of sediment pollution, combined with cluster analysis and Pearson correlation analysis to dissect the influencing factors, this study explores the spatiotemporal characteristics and key drivers of nitrogen and phosphorus release from river sediments, aiming to provide insights for the management of endogenous pollution within watersheds. The findings revealed notable spatial heterogeneity among the water quality indicators of the nine rivers. Specifically, among the 22 samples, the S22 satellite reservoir exhibited the lowest DO concentration (0.44 mg/L), while the S18 Daxi River demonstrated the highest NH4-N and TN concentrations (6.13 mg/L and 8.51 mg/L, respectively), indicating severe eutrophication. The total nitrogen concentration in the sediments ranged from 648.30 to 3849.63 mg/kg, and the total phosphorus content ranged from 171.25 to 1073.10 mg/kg, both of which are relatively high. According to the comprehensive pollution index (FF), 27.3% of the samples were in a state of severe pollution. Static release experiments demonstrated that the nitrogen and phosphorus release rates of the R7 Daxi River and R6 Qiaoxi River were significantly higher than those of other rivers, with the TN release rate of the R7 Daxi River reaching as high as 317.1 mg/(m2·d). Cluster analysis indicated that sediment characteristics, dissolved oxygen (DO) in the overlying water, and external pollution inputs were the primary factors influencing the release of nitrogen and phosphorus from

References

[1]  温泉, 马迎群, 秦延文, 等. 成渝地区中小河流水生态环境保护存在的问题与对策[J]. 环境工程技术学报, 2022, 12(2): 493-499.
[2]  范成新, 钟继承, 张路, 等. 湖泊底泥环保疏浚决策研究进展与展望[J]. 湖泊科学, 2020, 32(5): 1254-1277.
[3]  朱伟, 侯豪, 刘环, 等. 太湖底泥磷释放量及释放规律的研究综述[J]. 湖泊科学, 2025, 37(1): 14-35.
[4]  张占梅, 黄大俊, 石瑞琦, 等. 重庆主城区河流底泥中重金属污染现状及生态风险分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 122-127.
[5]  SCHINDLER, D. W., CARPENTER, S. R., CHAPRA, S. C., et al. Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 2016, 50(17): 8923-8929.
https://doi.org/10.1021/acs.est.6b02204
[6]  SØNDERGAARD, M., JENSEN, J. P. and JEPPESEN, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 2003, 506: 135-145.
https://doi.org/10.1023/b:hydr.0000008611.12704.dd
[7]  JEPPESEN, E., SØNDERGAARD, M., JENSEN, J. P., et al. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 2005, 50(10): 1747-1771.
https://doi.org/10.1111/j.1365-2427.2005.01415.x
[8]  贾艳乐, 贾飞虎, 马慧杰, 等. 白洋淀上覆水氮磷浓度对沉积物氮磷释放的影响[J]. 中国环境管理干部学院学报, 2019, 29(3): 89-93.
[9]  刘卓, 杨代琼, 李姣, 等. 沉积物氮模拟释放过程中氨氧化菌群落变化[J]. 应用化工, 2021, 50(10): 2677-2682+2686.
[10]  王志齐, 刘新星, 姚志宏, 等. 丹江口水库氮磷内源释放对比[J]. 环境科学, 2019, 40(11): 4953-4961.
[11]  SL 219-2013. 水环境监测规范[S]. 北京: 中国水利水电出版社, 2014.
[12]  GB/T 36197-2018. 土壤采样技术指南[S]. 北京: 中国标准出版社, 2018.
[13]  国家环境保护总局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京; 中国环境科学出版社, 2002.
[14]  NY/T 1121-2006. 土壤检测[S]. 北京: 中国农业出版社, 2006.
[15]  SL 394-2007. 铅、镉、钒、磷等34种元素的测定[S]. 北京: 中国水利水电出版社, 2007.
[16]  王艳平, 徐伟伟, 韩超, 等. 巢湖沉积物氮磷分布及污染评价[J]. 环境科学, 2021, 42(2): 699-711.
[17]  王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
[18]  金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 北京: 中国环境科学出版社, 1990.
[19]  张枫, 桂梓玲. 武汉市东湖底泥污染风险评估及精细化清淤研究[J]. 人民长江, 2024, 55(6): 45-52.
[20]  张洪, 薛雪, 郁达伟, 等. 鄱阳湖水位对沉积物磷释放的影响及总磷考核建议[J]. 人民长江, 2023, 54(1): 46-52.
[21]  陈超, 钟继承, 邵世光, 等. 太湖西北部典型疏浚/对照湖区内源性营养盐释放潜力对比[J]. 湖泊科学, 2014, 26(6): 829-836.
[22]  张茜, 冯民权, 郝晓燕. 上覆水环境条件对底泥氮磷释放的影响研究[J]. 环境污染与防治, 2020, 42(1): 7-11.
[23]  柳肖竹, 刘群群, 王文静, 等. 水力扰动对河口沉积物中重金属再释放的影响[J]. 生态与农村环境学报, 2020, 36(11): 1460-1467.
[24]  黎藐韩, 戚萌, 孙海龙, 等. 成都市锦江底泥氮磷和有机质的分布调查及特征评价[J]. 资源节约与环保, 2024(4): 84-89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133