全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

镧系锁磷剂(LMB)施用对沉水植物影响的研究进展
Research Progress of the Effects of Lanthanum Modified Bentonite Application on Submerged Macrophytes

DOI: 10.12677/wpt.2025.133008, PP. 58-64

Keywords: 富营养化,镧改性膨润土,沉水植物
Eutrophication
, Lanthanum Modified Bentonite, Submerged Macrophytes

Full-Text   Cite this paper   Add to My Lib

Abstract:

以镧系锁磷剂(LMB)为代表的原位钝化技术越来越多地应用于湖泊沉积物内源磷释放的控制中,期望达到控制富营养化,促使湖泊由浊水态向清水态转变的目的。沉水植物在湖泊清水态的形成和维持中起着核心作用,也常常用于湖泊富营养化修复中。因此,为了确保修复效果,明确沉水植物对原位钝化技术的响应情况十分必要。本文系统综述了镧系锁磷剂LMB施用对沉水植物的影响研究进展,重点关注沉水植物生物量、形态学特征、生理生化特征和种间关系等方面的变化情况,同时分析了作用机理,并指出当前研究的局限性,对未来研究方向提出了建议,以期为富营养化水体修复中锁磷剂的科学应用提供理论依据。
In situ phosphorus inactivation technologies, represented by lanthanum-modified bentonite (LMB), are increasingly being applied to control the release of internal phosphorus from lake sediments, with the aim of mitigating eutrophication and facilitating the transition of lakes from a turbid to a clear water state. Submerged macrophytes play a central role in the establishment and maintenance of clear water conditions in lakes and are often used in the restoration of eutrophic lakes. Therefore, in order to ensure the restoration efficacy, it is essential to clarify the response mechanism of submerged macrophytes to the application of in situ inactivation technologies such as LMB. This paper systematically reviews the progress of research on the effects of LMB application on submerged macrophytes, with a focus on the changes in aspects such as the biomass, morphological characteristics, physiological and biochemical characteristics, and interspecific relationships of submerged macrophytes. The mechanisms underlying these effects are analyzed, current research limitations are identified, and future research directions are proposed, providing a theoretical foundation for the scientific application of LMB in eutrophic waterbody restoration.

References

[1]  Smith, V.H. and Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207.
https://doi.org/10.1016/j.tree.2008.11.009
[2]  Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A.N., Shen, Q., et al. (2018) Trophic State Assessment of Global Inland Waters Using a Modis-Derived Forel-Ule Index. Remote Sensing of Environment, 217, 444-460.
https://doi.org/10.1016/j.rse.2018.08.026
[3]  Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J., et al. (2008) Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences, 105, 11254-11258.
https://doi.org/10.1073/pnas.0805108105
[4]  Schindler, D.W., Carpenter, S.R., Chapra, S.C., Hecky, R.E. and Orihel, D.M. (2016) Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50, 8923-8929.
https://doi.org/10.1021/acs.est.6b02204
[5]  Mackay, E., Maberly, S., Pan, G., Reitzel, K., Bruere, A., Corker, N., et al. (2014) Geoengineering in Lakes: Welcome Attraction or Fatal Distraction? Inland Waters, 4, 349-356.
https://doi.org/10.5268/iw-4.4.769
[6]  张巧颖, 杜瑛珣, 罗春燕, 刘正文. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学, 2019, 31(6): 1499-1509.
[7]  Dithmer, L., Lipton, A.S., Reitzel, K., Warner, T.E., Lundberg, D. and Nielsen, U.G. (2015) Characterization of Phosphate Sequestration by a Lanthanum Modified Bentonite Clay: A Solid-State NMR, EXAFS, and PXRD Study. Environmental Science & Technology, 49, 4559-4566.
https://doi.org/10.1021/es506182s
[8]  Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., et al. (2016) Eutrophication Management in Surface Waters Using Lanthanum Modified Bentonite: A Review. Water Research, 97, 162-174.
https://doi.org/10.1016/j.watres.2015.11.056
[9]  Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. and Walker, B. (2001) Catastrophic Shifts in Ecosystems. Nature, 413, 591-596.
https://doi.org/10.1038/35098000
[10]  Scheffer, M. and Jeppesen, E. (2007) Regime Shifts in Shallow Lakes. Ecosystems, 10, 1-3.
https://doi.org/10.1007/s10021-006-9002-y
[11]  Jeppesen, E., Søndergaard, M., Søndergaard, K. and Christoffersen (1998) The Structuring Role of Submerged Macrophytes in Lakes. Springer.
[12]  Levi, P.S., Riis, T., Alnøe, A.B., Peipoch, M., Maetzke, K., Bruus, C., et al. (2015) Macrophyte Complexity Controls Nutrient Uptake in Lowland Streams. Ecosystems, 18, 914-931.
https://doi.org/10.1007/s10021-015-9872-y
[13]  李敏娟, 燕文明, 陈翔, 李琪, 何翔宇, 吴婧玮, 郭梓锐. 锁磷剂-苦草联用对沉积物水界面中钴的影响研究[J]. 中国环境科学, 2024, 44(12): 6838-6845.
[14]  Zhang, X., Zhen, W., Cui, S., Wang, S., Chen, W., Zhou, Q., et al. (2024) The Effects of Different Doses of Lanthanum-Modified Bentonite in Combination with a Submerged Macrophyte (Vallisneria denseserrulata) on Phosphorus Inactivation and Macrophyte Growth: A Mesocosm Study. Journal of Environmental Management, 352, Article ID: 120053.
https://doi.org/10.1016/j.jenvman.2024.120053
[15]  符亦舒, 何虎, 何宏业, 马路生, 苏雅玲, 刘正文. 不同水体营养盐浓度下沉积物添加镧改性膨润土(Phoslock®)对轮叶黑藻(Hydrilla verticillata)生长的影响[J].湖泊科学, 2021, 33(2): 388-396.
[16]  Zhang, X., Zhen, W., Jensen, H.S., Reitzel, K., Jeppesen, E. and Liu, Z. (2021) The Combined Effects of Macrophytes (Vallisneria denseserrulata) and a Lanthanum-Modified Bentonite on Water Quality of Shallow Eutrophic Lakes: A Mesocosm Study. Environmental Pollution, 277, Article ID: 116720.
https://doi.org/10.1016/j.envpol.2021.116720
[17]  Lin, J., Zhong, Y., Fan, H., Song, C., Yu, C., Gao, Y., et al. (2016) Chemical Treatment of Contaminated Sediment for Phosphorus Control and Subsequent Effects on Ammonia-Oxidizing and Ammonia-Denitrifying Microorganisms and on Submerged Macrophyte Revegetation. Environmental Science and Pollution Research, 24, 1007-1018.
https://doi.org/10.1007/s11356-016-7828-1
[18]  Yu, W., Yang, H., Yang, Y., Chen, J., Liao, P., Wang, J., et al. (2022) Synergistic Effects and Ecological Responses of Combined In Situ Passivation and Macrophytes toward the Water Quality of a Macrophytes-Dominated Eutrophic Lake. Water, 14, Article No. 1847.
https://doi.org/10.3390/w14121847
[19]  Yan, W., He, X., Wu, T., Chen, M., Lin, J., Chen, X., et al. (2023) A Combined Study on Vallisneria Spiralis and Lanthanum Modified Bentonite to Immobilize Arsenic in Sediments. Environmental Research, 216, Article ID: 114689.
https://doi.org/10.1016/j.envres.2022.114689
[20]  Han, Y., Zhang, Y., Li, Q., Lürling, M., Li, W., He, H., et al. (2021) Submerged Macrophytes Benefit from Lanthanum Modified Bentonite Treatment under Juvenile Omni‐Benthivorous Fish Disturbance: Implications for Shallow Lake Restoration. Freshwater Biology, 67, 672-683.
https://doi.org/10.1111/fwb.13871
[21]  Waajen, G., van Oosterhout, F., Douglas, G. and Lürling, M. (2016) Management of Eutrophication in Lake De Kuil (the Netherlands) Using Combined Flocculant-Lanthanum Modified Bentonite Treatment. Water Research, 97, 83-95.
https://doi.org/10.1016/j.watres.2015.11.034
[22]  Gunn, I.D.M., Meis, S., Maberly, S.C. and Spears, B.M. (2013) Assessing the Responses of Aquatic Macrophytes to the Application of a Lanthanum Modified Bentonite Clay, at Loch Flemington, Scotland, UK. Hydrobiologia, 737, 309-320.
https://doi.org/10.1007/s10750-013-1765-5
[23]  Spears, B.M., Mackay, E.B., Yasseri, S., Gunn, I.D.M., Waters, K.E., Andrews, C., et al. (2016) A Meta-Analysis of Water Quality and Aquatic Macrophyte Responses in 18 Lakes Treated with Lanthanum Modified Bentonite (Phoslock®). Water Research, 97, 111-121.
https://doi.org/10.1016/j.watres.2015.08.020
[24]  Lin, Z., Zhong, C., Yu, G., Fu, Y., Guan, B., Liu, Z., et al. (2021) Effects of Sediments Phosphorus Inactivation on the Life Strategies of Myriophyllum Spicatum: Implications for Lake Restoration. Water, 13, Article No. 2112.
https://doi.org/10.3390/w13152112
[25]  董百丽, 秦伯强, 龚志军, 王永平. 三种沉积物改良措施比较及其对苦草生长的影响[J]. 生态学杂志, 2011, 30(12): 2726-2731.
[26]  Han, Y., Zou, X., Li, Q., Zhang, Y. and Li, K. (2022) Responses of Different Submerged Macrophytes to the Application of Lanthanum-Modified Bentonite (LMB): A Mesocosm Study. Water, 14, Article No. 1783.
https://doi.org/10.3390/w14111783
[27]  Wang, C., He, R., Wu, Y., Lürling, M., Cai, H., Jiang, H., et al. (2017) Bioavailable Phosphorus (P) Reduction Is Less than Mobile P Immobilization in Lake Sediment for Eutrophication Control by Inactivating Agents. Water Research, 109, 196-206.
https://doi.org/10.1016/j.watres.2016.11.045
[28]  Ågren, G.I. (2004) The C: N: P Stoichiometry of Autotrophs—Theory and Observations. Ecology Letters, 7, 185-191.
https://doi.org/10.1111/j.1461-0248.2004.00567.x
[29]  Rao, Q., Su, H., Ruan, L., Deng, X., Wang, L., Rao, X., et al. (2021) Stoichiometric and Physiological Mechanisms That Link Hub Traits of Submerged Macrophytes with Ecosystem Structure and Functioning. Water Research, 202, Article ID: 117392.
https://doi.org/10.1016/j.watres.2021.117392
[30]  Waajen, G., van Oosterhout, F. and Lürling, M. (2017) Bio-Accumulation of Lanthanum from Lanthanum Modified Bentonite Treatments in Lake Restoration. Environmental Pollution, 230, 911-918.
https://doi.org/10.1016/j.envpol.2017.07.046
[31]  van Oosterhout, F., Waajen, G., Yasseri, S., Manzi Marinho, M., Pessoa Noyma, N., Mucci, M., et al. (2020) Lanthanum in Water, Sediment, Macrophytes and Chironomid Larvae Following Application of Lanthanum Modified Bentonite to Lake Rauwbraken (the Netherlands). Science of the Total Environment, 706, Article ID: 135188.
https://doi.org/10.1016/j.scitotenv.2019.135188
[32]  Li, Y., Wang, L., Chao, C., Yu, H., Yu, D. and Liu, C. (2021) Submerged Macrophytes Successfully Restored a Subtropical Aquacultural Lake by Controlling Its Internal Phosphorus Loading. Environmental Pollution, 268, Article ID: 115949.
https://doi.org/10.1016/j.envpol.2020.115949
[33]  Liu, Z., Hu, J., Zhong, P., Zhang, X., Ning, J., Larsen, S.E., et al. (2018) Successful Restoration of a Tropical Shallow Eutrophic Lake: Strong Bottom-Up but Weak Top-Down Effects Recorded. Water Research, 146, 88-97.
https://doi.org/10.1016/j.watres.2018.09.007
[34]  Jain, M.S. and Kalamdhad, A.S. (2018) A Review on Management of Hydrilla verticillata and Its Utilization as Potential Nitrogen-Rich Biomass for Compost or Biogas Production. Bioresource Technology Reports, 1, 69-78.
https://doi.org/10.1016/j.biteb.2018.03.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133