全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

完全分解和Tate同调
Complete Decomposition and Tate Cohomology

DOI: 10.12677/PM.2025.157201, PP. 21-26

Keywords: Tate 同调, GFB -完全平坦分解, 平坦维数
Tate Homology
, GFB -Complete Flat Resolution, Flat Dimension

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tate同调理论在同调代数的研究中具有重要意义。文章首先引入了Tate同调的定义, 其次讨论了Tate同调消失的条件, 最后证明了Tate同调的平衡性。
Tate’s homology theory is of great significance in the study of homology algebra. This paper first introduces the definition of tate homology. Secondly, discusses the conditions for the disappearance of tate homology. Finally proves the balance of tate homology.

References

[1]  Buchweitz, R.-O. (1986) Maximal Cohen-Macaulay modules and Tate Cohomology over Goren- Stein Rings. Gottfried Wilhelm Leibniz Universitat Hannover, Preprint.
[2]  Farrell, F.T. (1977) An Extension of Tate Cohomology to a Class of Infinite Groups. Journal of Pure and Applied Algebra, 10, 153-161.
https://doi.org/10.1016/0022-4049(77)90018-4
[3]  Benson, D.J. and Carlson, J.F. (1992) Products in Negative Cohomology. Journal of Pure and Applied Algebra, 82, 107-129.
https://doi.org/10.1016/0022-4049(92)90116-w
[4]  Mislin, G. (1994) Tate Cohomology for Arbitrary Groups via Satellites. Topology and Its Ap- plications, 56, 293-300.
https://doi.org/10.1016/0166-8641(94)90081-7
[5]  Goichot, F. (1992) Homologie de Tate-Vogel′equivariante. Journal of Pure and Applied Algebra, 82, 39-64.
https://doi.org/10.1016/0022-4049(92)90009-5
[6]  Avramov, L.L. and Martsinkovsky, A. (2002) Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension. Proceedings of the London Mathematical Society, 85, 393-440.
https://doi.org/10.1112/s0024611502013527
[7]  Veliche, O. (2005) Gorenstein Projective Dimension for Complexes. Transactions of the Amer- ican Mathematical Society, 358, 1257-1283.
https://doi.org/10.1090/s0002-9947-05-03771-2
[8]  Christensen, L. and Jorgensen, D. (2013) Tate (Co)homology via Pinched Complexes. Trans- actions of the American Mathematical Society, 366, 667-689.
https://doi.org/10.1090/s0002-9947-2013-05746-7
[9]  Rozas, J.R.G. (1999) Covers and Envelopes in the Category of Complexes of Modules. CRC Press.
[10]  Christensen, L.W., Frankild, A. and Holm, H. (2006) On Gorenstein Projective, Injective and Flat Dimensions—A Functorial Description with Applications. Journal of Algebra, 302, 231-279.
https://doi.org/10.1016/j.jalgebra.2005.12.007
[11]  Liang, L. (2012) Tate Homology of Modules of Finite Gorenstein Flat Dimension. Algebras and Representation Theory, 16, 1541-1560.
https://doi.org/10.1007/s10468-012-9369-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133