全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

边界能量图张量积笛卡尔积联图运算的综合研究
Comprehensive Research on Tensor Product, Cartesian Product, and Join Operation of Borderenergetic Graphs

DOI: 10.12677/pm.2025.157202, PP. 27-34

Keywords: 边界能量图,张量积,笛卡尔积,联图运算,图论
Borderenergetic Graph
, Tensor Product, Cartesian Product, Joint Graph Operation, Graph Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

图运算在复杂网络分析与优化中具有重要作用,边界能量图、张量积、笛卡尔积以及联图运算各自展现出独特的数学特性和应用价值。边界能量图通过谱特性衡量网络的稳定性,张量积用于构建多层级网络拓扑,笛卡尔积优化并行计算结构,联图运算增强多网络融合能力。不同运算方法在动态网络优化、信息传输与计算效率提升等方面发挥关键作用。综合运用这些方法可提升网络的拓扑优化能力,为复杂系统建模提供更完善的理论支持和实践指导。
Graph operations play a significant role in complex network analysis and optimization. Borderenergetic graphs, tensor products, Cartesian products, and join operations each exhibit unique mathematical properties and application values. Borderenergetic graphs measure the stability of networks through spectral characteristics, tensor products are used to construct multi-level network topologies, Cartesian products optimize parallel computing structures, and join operations enhance the integration capabilities of multiple networks. Different operation methods play a key role in dynamic network optimization, information transmission, and the improvement of computational efficiency. The comprehensive application of these methods can enhance the topological optimization ability of networks and provide more complete theoretical support and practical guidance for complex system modeling.

References

[1]  陈锦松, 杨书若月, 刘剑萍. 图的一个运算及其在阶能量图上的应用[J]. 福州大学学报(自然科学版), 2024, 52(6): 635-638.
[2]  Gong, S.C., Li, X., Xu, G.H., Gutman, I. and Furtula, B. (2015) Borderenergetic Graphs. MATCH Communications in Mathematical and in Computer Chemistry, 74, 321-332.
[3]  Gutman, I. (1977) Acyclic Systems with Extremal Hückel π-Electron Energy. Theoretica chimica acta, 45, 79-87.
https://doi.org/10.1007/BF00552542
[4]  Gutman, I., Li, X. and Zhang, J. (2009) Graph Energy. In: Dehmer, M. and Emmert-Streb, F., Eds., Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, 145-174.
https://doi.org/10.1002/9783527627981.ch7
[5]  Li, X., Shi, Y.T. and Gutman, I. (2012) Graph Energy. Springer-Verlag.
https://doi.org/10.1007/978-1-4614-4220-2
[6]  程代展, 赵荣, 冯俊娥. 公理化的矩阵半张量积[J]. 控制理论与应用, 2024, 41(7): 1172-1180.
[7]  吕江. 若干笛卡尔积图的Tutte多项式研究[D]: [硕士学位论文]. 西宁: 青海师范大学, 2024.
[8]  周泽坤. 几类笛卡尔乘积图的L(p, q)-边跨度[D]: [硕士学位论文]. 天津: 天津职业技术师范大学, 2024.
[9]  张明, 贾泽乐, 李沐春. 几种笛卡尔积图的集合边染色[J]. 兰州交通大学学报, 2021, 40(4): 134-139.
[10]  王斌. 图的笛卡尔积运算和张量积运算不变性研究及其应用[D]: [硕士学位论文]. 武汉: 湖北工业大学, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133