|
分子内环化反应合成芴类化合物的研究进展
|
Abstract:
芴是一种共轭良好的平面多环芳香有机化合物,具有特殊的物理和化学性质,是有机合成中的重要支架。芴类化合物在聚合物、电子设备、传感器和光致变色材料中被广泛应用,因此芴及其衍生物的合成方法具有重要的研究价值。在本文中,主要综述了芴类化合物的结构特征和应用前景,然后对近年来通过分子内环化反应合成芴类化合物的方法进行了总结和归纳,为此类化合物的合成研究提供参考。
Fluorene is a well-conjugated planar polycyclic aromatic organic compound with special physical and chemical properties, making it an important scaffold in organic synthesis. Fluorene derivatives are widely used in polymers, electronic devices, sensors, and photochromic materials, hence, the synthesis methods of fluorene and its derivatives hold significant research value. This article primarily reviews the structural characteristics and application prospects of fluorene compounds, and summarizes the methods for synthesizing fluorene compounds through intramolecular cyclization reactions in recent years, providing a reference for the synthesis research of these compounds.
[1] | Burns, D.M. and Iball, J. (1955) The Crystal and Molecular Structure of Fluorene. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 227, 200-214. https://doi.org/10.1098/rspa.1955.0004 |
[2] | Grimsdale, A.C. and Müllen, K. (2007) Oligomers and Polymers Based on Bridged Phenylenes as Electronic Materials. Macromolecular Rapid Communications, 28, 1676-1702. https://doi.org/10.1002/marc.200700247 |
[3] | Shi, Y. and Gao, S. (2016) Recent Advances of Synthesis of Fluorenone and Fluorene Containing Natural Products. Tetrahedron, 72, 1717-1735. https://doi.org/10.1016/j.tet.2016.02.022 |
[4] | InganÄs, O., Zhang, F. and Andersson, M.R. (2009) Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics. Accounts of Chemical Research, 42, 1731-1739. https://doi.org/10.1021/ar900073s |
[5] | Saragi, T.P., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. and Salbeck, J. (2007) Spiro Compounds for Organic Optoelectronics. Chemical Reviews, 107, 1011-1065. https://doi.org/10.1021/cr0501341 |
[6] | Fleckenstein, C.A. and Plenio, H. (2007) 9-Fluorenylphosphines for the Pd-Catalyzed Sonogashira, Suzuki, and Buchwald-Hartwig Coupling Reactions in Organic Solvents and Water. Chemistry—A European Journal, 13, 2701-2716. https://doi.org/10.1002/chem.200601142 |
[7] | Wertz, S., Leifert, D. and Studer, A. (2013) Cross Dehydrogenative Coupling via Base-Promoted Homolytic Aromatic Substitution (BHAS): Synthesis of Fluorenones and Xanthones. Organic Letters, 15, 928-931. https://doi.org/10.1021/ol4000857 |
[8] | Morimoto, K., Itoh, M., Hirano, K., Satoh, T., Shibata, Y., Tanaka, K. and Miura, M. (2012) Synthesis of Fluorene Derivatives through Rhodium‐Catalyzed Dehydrogenative Cyclization. Angewandte Chemie International Edition, 51, 5359-5362. https://doi.org/10.1002/anie.201201526 |
[9] | Itoh, M., Hirano, K., Satoh, T., Shibata, Y., Tanaka, K. and Miura, M. (2013) Rhodium-and Iridium-Catalyzed Dehydrogenative Cyclization through Double C-H Bond Cleavages to Produce Fluorene Derivatives. The Journal of Organic Chemistry, 78, 1365-1370. https://doi.org/10.1021/jo4000465 |
[10] | Song, J., Li, Y., Sun, W., Yi, C., Wu, H., Wang, H. and Liu, C. (2016) Efficient Palladium-Catalyzed C (sp 2)-H activation towards the Synthesis of Fluorenes. New Journal of Chemistry, 40, 9030-9033. https://doi.org/10.1039/c6nj02033j |
[11] | Corrie, T.J.A., Ball, L.T., Russell, C.A. and Lloyd-Jones, G.C. (2016) Au-Catalyzed Biaryl Coupling to Generate 5-to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus Π-complexation. Journal of the American Chemical Society, 139, 245-254. https://doi.org/10.1021/jacs.6b10018 |
[12] | Fuchibe, K. and Akiyama, T. (2006) Low-Valent Niobium-Mediated Double Activation of C-F/C-H Bonds: Fluorene Synthesis from o-Arylated Α, α,α-Trifluorotoluene Derivatives. Journal of the American Chemical Society, 128, 1434-1435. https://doi.org/10.1021/ja0565323 |
[13] | Hwang, S.J., Kim, H.J. and Chang, S. (2009) Highly Efficient and Versatile Synthesis of Polyarylfluorenes via Pd-Catalyzed C-H Bond Activation. Organic Letters, 11, 4588-4591. https://doi.org/10.1021/ol901854f |
[14] | Chernyak, N. and Gevorgyan, V. (2009) Synthesis of Fluorenes via the Palladium-Catalyzed 5-Exo-Dig Annulation of o-Alkynylbiaryls. Advanced Synthesis & Catalysis, 351, 1101-1114. https://doi.org/10.1002/adsc.200800765 |
[15] | Hsiao, C., Lin, Y., Liu, C., Wu, T. and Wu, Y. (2010) Synthesis of Methylene-Bridge Polyarenes through Palladium-Catalyzed Activation of Benzylic Carbon-Hydrogen Bond. Advanced Synthesis & Catalysis, 352, 3267-3274. https://doi.org/10.1002/adsc.201000651 |
[16] | Sarkar, S., Maiti, S., Bera, K., Jalal, S. and Jana, U. (2012) Highly Efficient Synthesis of Polysubstituted Fluorene via Iron-Catalyzed Intramolecular Friedel-Crafts Alkylation of Biaryl Alcohols. Tetrahedron Letters, 53, 5544-5547. https://doi.org/10.1016/j.tetlet.2012.08.005 |
[17] | Hirano, M., Kawazu, S. and Komine, N. (2014) Direct Access to Fluorene by Successive C-O/C-H Bond Activations of 2-Phenylbenzyl Ester. Organometallics, 33, 1921-1924. https://doi.org/10.1021/om5001869 |
[18] | Das, T., Chakraborty, A. and Sarkar, A. (2014) Solvent Control of Product Diversity in Palladium-Catalyzed Addition of Arylboronic Acid to Aryl Aldehydes. Tetrahedron Letters, 55, 5174-5178. https://doi.org/10.1016/j.tetlet.2014.07.073 |
[19] | Aziz, J., Frison, G., Gómez, M., Brion, J., Hamze, A. and Alami, M. (2014) Copper-Catalyzed Coupling of n-Tosylhydrazones with Amines: Synthesis of Fluorene Derivatives. ACS Catalysis, 4, 4498-4503. https://doi.org/10.1021/cs5014877 |
[20] | Seo, B., Jeon, W.H., Kim, J., Kim, S. and Lee, P.H. (2014) Synthesis of Fluorenes via Tandem Copper-Catalyzed [3+2] Cycloaddition and Rhodium-Catalyzed Denitrogenative Cyclization in a 5-Exo Mode from 2-Ethynylbiaryls and n-Sulfonyl Azides in One Pot. The Journal of Organic Chemistry, 80, 722-732. https://doi.org/10.1021/jo5027113 |
[21] | Huang, D., Yang, W., Zhang, J., Wang, X., Wang, X. and Hu, Y. (2016) Lewis Acid-Catalyzed Tandem Synthesis of 9-Sulfonylamino-and 9-Arylfluorenes. RSC Advances, 6, 47570-47578. https://doi.org/10.1039/C6RA03889A |
[22] | Xu, S., Chen, R., Fu, Z., Zhou, Q., Zhang, Y. and Wang, J. (2017) Palladium-Catalyzed Formal [4+1] Annulation via Metal Carbene Migratory Insertion and C (sp2)-H Bond Functionalization. ACS Catalysis, 7, 1993-1997. https://doi.org/10.1021/acscatal.6b03562 |
[23] | Tanji, Y., Tsuji, Y. and Fujihara, T. (2020) Palladium-Catalyzed Synthesis of Fluorenes by Intramolecular C (sp2)-H Activation at Room Temperature. Synlett, 31, 805-808. https://doi.org/10.1055/s-0039-1690812 |
[24] | Guo, H., Zhang, S., Feng, X., et al. (2022) Palladium-Catalyzed Cycloisomerization of 2-Ethynylbiaryls to 9-Methylidene Fluorenes. Organic Letters, 24, 2596-2600. https://doi.org/10.1021/acs.orglett.2c00534 |
[25] | Matsuyama, H., Zhang, X., Terada, M., et al. (2023) Construction of Alkylidene Fluorene Scaffolds Using Pd-Catalyzed Direct Arene/Alkene Coupling Strategy. Organic Letters, 25, 800-804. https://doi.org/10.1021/acs.orglett.2c04307 |