|
芴酮及其衍生物的合成研究进展
|
Abstract:
芴酮化合物以[6-5-6]三个环系为核心骨架,化学式为C13H8O。其结构由两个苯环通过一个五元环连接而成,五元环上含有一个羰基(C=O)。分子整体呈现平面结构,苯环与五元环共平面,形成稳定的共轭体系。凭借其独特的平面共轭结构和丰富的化学性质,芴酮类化合物在科学研究和工业应用中占据着重要地位。近年来,随着对这些活性化合物研究的深入,芴酮及其衍生物的合成方法得到了不断发展,尤其是绿色化学方法和新型催化剂的使用,推动了其合成技术的创新。本综述将总结近年来芴酮及其衍生物的合成方法,包括经典的合成策略、新型反应机制和绿色合成方法,旨在为该领域的研究者提供参考和启示。
Fluorenone compounds feature a [6-5-6] fused ring system as their core skeleton, with the chemical formula C13H8O. Their structure consists of two benzene rings connected by a five-membered ring containing a carbonyl group (C=O). The molecule adopts a planar geometry, with the benzene rings and the five-membered ring lying coplanar to form a stable conjugated system. Owing to their unique planar conjugated structure and versatile chemical properties, fluorenone derivatives hold significant importance in both scientific research and industrial applications. In recent years, with deepening investigations into these bioactive compounds, synthetic methodologies for fluorenone and its derivatives have undergone continuous advancements, particularly through the adoption of green chemistry approaches and novel catalysts, driving innovation in synthetic techniques. This review summarizes recent progress in the synthesis of fluorenone and its derivatives, encompassing classical synthetic strategies, emerging reaction mechanisms, and sustainable methodologies, aiming to provide insights and inspiration for researchers in this field.
[1] | Sun, Q.J., Fan, B.H., Tan, Z.A., Yang, C.H., Li, Y.F. and Yang, Y. (2006) White Light from Polymer Light-Emitting Diodes: Utilization of Fluorenone Defects and Exciplex. Applied Physics Letters, 88, Article 163510. https://doi.org/10.1063/1.2197318 |
[2] | Zhang, X., Han, J., Li, P., Ji, X. and Zhang, Z. (2009) Improved, Highly Efficient, and Green Synthesis of Bromofluorenones and Nitrofluorenones in Water. Synthetic Communications, 39, 3804-3815. https://doi.org/10.1080/00397910902838904 |
[3] | Terao, K., Terao, Y., Teramoto, A., Nakamura, N., Fujiki, M. and Sato, T. (2001) Temperature and Solvent Dependence of Stiffness of Poly{n-Hexyl-[(s)-3-Methylpentyl]Silylene} in Dilute Solutions. Macromolecules, 34, 4519-4525. https://doi.org/10.1021/ma010212w |
[4] | Facchetti, A. (2010) π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials, 23, 733-758. https://doi.org/10.1021/cm102419z |
[5] | Rao, M.L.N. and Dasgupta, P. (2012) Palladium Catalyzed Atom-Economic Synthesis of Functionalized 9-(Diarylmethylene)-9H-Fluorenes Using Triarylbismuths in One-Pot Bis-Coupling Process. Tetrahedron Letters, 53, 162-165. https://doi.org/10.1016/j.tetlet.2011.10.156 |
[6] | Yuan, M., Wang, D., Xue, P., Wang, W., Wang, J., Tu, Q., et al. (2014) Fluorenone Organic Crystals: Two-Color Luminescence Switching and Reversible Phase Transformations between π-π Stacking-Directed Packing and Hydrogen Bond-Directed Packing. Chemistry of Materials, 26, 2467-2477. https://doi.org/10.1021/cm500441r |
[7] | Greenlee, M.L., Laub, J.B., Rouen, G.P., DiNinno, F., Hammond, M.L., Huber, J.L., et al. (1999) Dicationic 2-Fluorenonylcarbapenems: Potent Anti-MRS Agents with Improved Solubility and Pharmacokinetic Properties. Bioorganic & Medicinal Chemistry Letters, 9, 3225-3230. https://doi.org/10.1016/s0960-894x(99)00567-3 |
[8] | Perry, P.J., Read, M.A., Davies, R.T., Gowan, S.M., Reszka, A.P., Wood, A.A., et al. (1999) 2,7-Disubstituted Amidofluorenone Derivatives as Inhibitors of Human Telomerase. Journal of Medicinal Chemistry, 42, 2679-2684. https://doi.org/10.1021/jm990084q |
[9] | Fu, J.-M., Zhao, B.-P., Sharp, M.J. and Snieckus, V. (1994) ortho and Remote Metalation—Cross Coupling Strategies. Total Synthesis of the Naturally Occurring Fluorenone Dengibsinin and the Azafluoranthene Alkaloid Imeluteine. Canadian Journal of Chemistry, 72, 227-236. https://doi.org/10.1139/v94-035 |
[10] | Nicolaou, K.C., Li, H., Nold, A.L., Pappo, D. and Lenzen, A. (2007) Total Synthesis of Kinamycins C, F, and J. Journal of the American Chemical Society, 129, 10356-10357. https://doi.org/10.1021/ja074297d |
[11] | Kraus, G.A., Chaudhary, D., Yuan, Y. and Schuster, A. (2012) Nitromethyl Benzoate Annulation Reactions: A Rapid Construction of the Stealthin Skeleton. Tetrahedron Letters, 53, 4444-4446. https://doi.org/10.1016/j.tetlet.2012.06.051 |
[12] | Feng, Z., Lu, X., Gan, L., Zhang, Q. and Lin, L. (2020) Xanthones, a Promising Anti-Inflammatory Scaffold: Structure, Activity, and Drug Likeness Analysis. Molecules, 25, 598. https://doi.org/10.3390/molecules25030598 |
[13] | Câmara, G.B.M., Barbosa, R.d.M., García-Villén, F., Viseras, C., Almeida Júnior, R.F.d., Machado, P.R.L., et al. (2021) Nanocomposite Gels of Poloxamine and Laponite for β-Lapachone Release in Anticancer Therapy. European Journal of Pharmaceutical Sciences, 163, Article 105861. https://doi.org/10.1016/j.ejps.2021.105861 |
[14] | Andrews, E.R., Fleming, R.W., Grisar, J.M., Kihm, J.C., Wenstrup, D.L. and Mayer, G.D. (1974) Bis Basic-Substituted Polycyclic Aromatic Compounds. New Class of Antiviral Agents. 2. Tilorone and Related Bis-Basic Ethers of Fluorenone, Fluorenol, and Fluorene. Journal of Medicinal Chemistry, 17, 882-886. https://doi.org/10.1021/jm00254a020 |
[15] | Robarge, M.J., Husbands, S.M., Kieltyka, A., Brodbeck, R., Thurkauf, A. and Newman, A.H. (2001) Design and Synthesis of [(2,3-Dichlorophenyl)Piperazin-1-Yl]Alkylfluorenylcarboxamides as Novel Ligands Selective for the Dopamine D3 Receptor Subtype. Journal of Medicinal Chemistry, 44, 3175-3186. https://doi.org/10.1021/jm010146o |
[16] | Lee, S., Esteva-Font, C., Phuan, P., Anderson, M.O. and Verkman, A.S. (2015) Discovery, Synthesis and Structure-Activity Analysis of Symmetrical 2,7-Disubstituted Fluorenones as Urea Transporter Inhibitors. MedChemComm, 6, 1278-1284. https://doi.org/10.1039/c5md00198f |
[17] | Liu, X., Luo, H., Huang, Y., Bao, J., Tang, G., Chen, Y., et al. (2013) Selaginpulvilins A-D, New Phosphodiesterase-4 Inhibitors with an Unprecedented Skeleton from Selaginella pulvinata. Organic Letters, 16, 282-285. https://doi.org/10.1021/ol403282f |
[18] | Ye, F., Haddad, M., Michelet, V. and Ratovelomanana-Vidal, V. (2016) Access toward Fluorenone Derivatives through Solvent-Free Ruthenium Trichloride Mediated [2 + 2 + 2] Cycloadditions. Organic Letters, 18, 5612-5615. https://doi.org/10.1021/acs.orglett.6b02840 |
[19] | Chen, X., Ozturk, S. and Sorensen, E.J. (2017) Synthesis of Fluorenones from Benzaldehydes and Aryl Iodides: Dual C-H Functionalizations Using a Transient Directing Group. Organic Letters, 19, 1140-1143. https://doi.org/10.1021/acs.orglett.7b00161 |
[20] | Manick, A., Salgues, B., Parrain, J., Zaborova, E., Fages, F., Amatore, M., et al. (2020) Access to Fluorenones Using Benzocyclopentynone Surrogate as Partner for the [2 + 2 + 2] Cycloaddition Reaction. Organic Letters, 22, 1894-1898. https://doi.org/10.1021/acs.orglett.0c00235 |
[21] | Xie, Y., Huang, R., Li, R., Zhang, C., Fu, J., Zhao, L., et al. (2020) Metal-Free [3+3] Benzannulation of 1-Indanylidene-Malononitrile with Morita-Baylis-Hillman Carbonates: Direct Access to Functionalized Fluorene and Fluorenone Derivatives. Chemical Communications, 56, 1948-1951. https://doi.org/10.1039/d0cc00143k |
[22] | Liu, X., Sheng, H., Zhou, Y. and Song, Q. (2021) Pd-Catalyzed Assembly of Fluoren-9-Ones by Merging of C-H Activation and Difluorocarbene Transfer. Organic Letters, 23, 2543-2547. https://doi.org/10.1021/acs.orglett.1c00467 |
[23] | An, G., Wang, L. and Han, J. (2021) Palladium Catalyzed Regioselective Cyclization of Arylcarboxylic Acids via Radical Intermediates with Diaryliodonium Salts. Organic Letters, 23, 8688-8693. https://doi.org/10.1021/acs.orglett.1c03016 |
[24] | Parui, N., Mandal, T. and Dash, J. (2023) Rapid Access to Substituted Indenones through Grignard Reaction and Its Application in the Synthesis of Fluorenones Using Ring Closing Metathesis. European Journal of Organic Chemistry, 26, e202201285. https://doi.org/10.1002/ejoc.202201285 |
[25] | Li, W., Yu, Y., Yang, J., Fu, K., Zhang, X., Shi, S., et al. (2023) Synthesis of Fluoren-9-Ones via Pd-Catalyzed Annulation of 2-Iodobiphenyls with Vinylene Carbonate. Chemistry—An Asian Journal, 19, e202301040. https://doi.org/10.1002/asia.202301040 |
[26] | Laha, J.K., Jethava, K.P. and Patel, S. (2015) Scope of Successive C-H Functionalizations of the Methyl Group in 3-Picolines: Intramolecular Carbonylation of Arenes to the Metal-Free Synthesis of 4-Azafluorenones. Organic Letters, 17, 5890-5893. https://doi.org/10.1021/acs.orglett.5b03071 |
[27] | Tang, J., Zhao, S., Wei, Y., Quan, Z. and Huo, C. (2017) CBr4 Promoted Intramolecular Aerobic Oxidative Dehydrogenative Arylation of Aldehydes: Application in the Synthesis of Xanthones and Fluorenones. Organic & Biomolecular Chemistry, 15, 1589-1592. https://doi.org/10.1039/c7ob00080d |
[28] | Gao, Q. and Xu, S. (2018) Palladium-Catalyzed Synthesis of Fluoreones from Bis(2-Bromophenyl)Methanols. Organic & Biomolecular Chemistry, 16, 208-212. https://doi.org/10.1039/c7ob02895d |
[29] | Amaya, T. and Fujimoto, H. (2018) Iron(III) Nitrate-Induced Aerobic and Catalytic Oxidative Cleavage of Olefins. Tetrahedron Letters, 59, 2657-2660. https://doi.org/10.1016/j.tetlet.2018.05.070 |
[30] | Shen, H., Xiao, X. and Hoye, T.R. (2019) Benzyne Cascade Reactions via Benzoxetenonium Ions and Their Rearrangements to o-Quinone Methides. Organic Letters, 21, 1672-1675. https://doi.org/10.1021/acs.orglett.9b00215 |
[31] | Dharpure, P.D., Bhowmick, A., Warghude, P.K. and Bhat, R.G. (2020) Visible-Light Mediated Facile Dithiane Deprotection under Metal Free Conditions. Tetrahedron Letters, 61, Article 151407. https://doi.org/10.1016/j.tetlet.2019.151407 |
[32] | Jourjine, I.A.P., Zeisel, L., Krauß, J. and Bracher, F. (2021) Synthesis of Highly Substituted Fluorenones via Metal-Free TBHP-Promoted Oxidative Cyclization of 2-(Aminomethyl)biphenyls. Application to the Total Synthesis of Nobilone. Beilstein Journal of Organic Chemistry, 17, 2668-2679. https://doi.org/10.3762/bjoc.17.181 |
[33] | Wang, D., Shi, Z., Zhang, X., Cui, Z. and Wang, Q. (2021) O2-Mediated Transformation of 9-Phenanthrenol: An Approach to the Synthesis of Phenanthrenyl Ketal and 9-Fluorenones. Organic Chemistry Frontiers, 8, 266-272. https://doi.org/10.1039/d0qo01234c |
[34] | Laha, J.K., Gulati, U., Saima, Schulte, T. and Breugst, M. (2022) pH-Controlled Intramolecular Decarboxylative Cyclization of Biarylacetic Acids: Implication on Umpolung Reactivity of Aroyl Radicals. The Journal of Organic Chemistry, 87, 6638-6656. https://doi.org/10.1021/acs.joc.2c00295 |
[35] | Hamada, S. and Yoshida, S. (2023) Synthesis of Fluorenones and Xanthones through Intramolecular C-F Arylation. Bulletin of the Chemical Society of Japan, 96, 401-405. https://doi.org/10.1246/bcsj.20230042 |
[36] | Yang, X., Guo, Y., Tong, H., Liu, R. and Zhou, R. (2023) Metal-Free Acceptorless Dehydrogenative Cross-Coupling of Aldehydes/Alcohols with Alcohols. Green Chemistry, 25, 1672-1678. https://doi.org/10.1039/d2gc04594j |
[37] | Fan, T., Wang, M., Yin, Y., Fang, L., Xu, H., Wu, G., et al. (2023) Porous Aromatic Framework Covalently Embedded with N-Hydroxyphthalimide as Metal-Free Heterogeneous Catalyst for Highly Efficient and Selective Aerobic Oxidation. ChemCatChem, 16, e202301171. https://doi.org/10.1002/cctc.202301171 |
[38] | Zhang, B., Li, Y., Zhu, Y., Zhu, F., Liao, S., Gao, X., et al. (2024) Manganese/CaCO3-Based Dual Functional Catalyst Facilitating Basic Catalysis Activity and Stability for the Selective Oxidation of Aromatics. Applied Surface Science, 654, Article 159522. https://doi.org/10.1016/j.apsusc.2024.159522 |
[39] | Zhang, S., Cen, M., Li, C., Liu, L., Huang, T. and Chen, T. (2024) Pd-Catalyzed Decarbonylative sp2 C-H Arylation: Construction of Five-and Six-Membered (Hetero)Cyclic Compounds. Organic Letters, 26, 4660-4665. https://doi.org/10.1021/acs.orglett.4c01412 |
[40] | He, H., Pan, C., Hou, Z., Sun, M. and Wang, L. (2024) Organocatalyzed Photoelectrochemistry for the Generation of Acyl and Phosphoryl Radicals through Hydrogen Atom-Transfer Process. The Journal of Organic Chemistry, 89, 7531-7540. https://doi.org/10.1021/acs.joc.4c00189 |