|
分子内烯–羰复分解反应合成六元及中环研究进展
|
Abstract:
烯–羰复分解反应作为碳–碳键构建的重要合成方法,该反应的成功实施高度依赖于催化剂的开发,经过数十年的发展,目前已具有较为完善的催化体系。分子内的烯–羰复分解反应为构建碳环或杂环化合物提供了高效途径,在材料和复杂分子合成中具有良好的利用价值。本文主要介绍了烯–羰复分解反应在合成六元环、中环化合物的应用,并对相关催化剂和反应机理进行介绍。
The alkene-carbonyl metathesis reaction serves as an important synthetic method for carbon-carbon bond formation, and its successful implementation heavily relies on the development of catalysts. After decades of progress, a relatively well-established catalytic system has been achieved. Intramolecular alkene-carbonyl metathesis provides an efficient route for constructing carbocyclic or heterocyclic compounds, demonstrating significant value in materials science and complex molecule synthesis. This article primarily focuses on the application of alkene-carbonyl metathesis in the synthesis of six-membered and medium-sized rings, along with an introduction to relevant catalysts and reaction mechanisms.
[1] | Cheng, Z., Huang, K., Wang, C., Chen, L., Li, X., Hu, Z., et al. (2025) Catalytic Remodeling of Complex Alkenes to Oxonitriles through C=C Double Bond Deconstruction. Science, 387, 1083-1090. https://doi.org/10.1126/science.adq8918 |
[2] | Hoveyda, A.H., Liu, Z., Qin, C., Koengeter, T. and Mu, Y. (2020) Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It. Angewandte Chemie International Edition, 59, 22324-22348. https://doi.org/10.1002/anie.202010205 |
[3] | Liu, P. and Ai, C. (2018) Olefin Metathesis Reaction in Rubber Chemistry and Industry and Beyond. Industrial & Engineering Chemistry Research, 57, 3807-3820. https://doi.org/10.1021/acs.iecr.7b03830 |
[4] | Ogba, O.M., Warner, N.C., O’Leary, D.J. and Grubbs, R.H. (2018) Recent Advances in Ruthenium-Based Olefin Metathesis. Chemical Society Reviews, 47, 4510-4544. https://doi.org/10.1039/c8cs00027a |
[5] | Chauvin, Y. (2006) Olefinmetathese: Die frühen Tage (Nobel-Vortrag). Angewandte Chemie, 118, 3824-3831. https://doi.org/10.1002/ange.200601234 |
[6] | Fustero, S., Simón-Fuentes, A., Barrio, P. and Haufe, G. (2014) Olefin Metathesis Reactions with Fluorinated Substrates, Catalysts, and Solvents. Chemical Reviews, 115, 871-930. https://doi.org/10.1021/cr500182a |
[7] | Ravindar, L., Lekkala, R., Rakesh, K.P., Asiri, A.M., Marwani, H.M. and Qin, H. (2018) Carbonyl-Olefin Metathesis: A Key Review. Organic Chemistry Frontiers, 5, 1381-1391. https://doi.org/10.1039/c7qo01037k |
[8] | Albright, H., Davis, A.J., Gomez-Lopez, J.L., Vonesh, H.L., Quach, P.K., Lambert, T.H., et al. (2021) Carbonyl-Olefin Metathesis. Chemical Reviews, 121, 9359-9406. https://doi.org/10.1021/acs.chemrev.0c01096 |
[9] | Zhang, X. (2024) Cyclization Strategies in Carbonyl-Olefin Metathesis: An Up-to-Date Review. Molecules, 29, Article 4861. https://doi.org/10.3390/molecules29204861 |
[10] | Chen, L., Wang, Z., Fang, E., Fan, Z. and Song, S. (2025) Probing the Catalytic Degradation of Unsaturated Polyolefin Materials via Fe-Based Lewis Acids-Initiated Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 64, e202503408. https://doi.org/10.1002/anie.202503408 |
[11] | Tremel, P., Iacobucci, C., Massi, L., Olivero, S., Gal, J. and Duñach, E. (2015) Catalytic Intramolecular Carbonyl-Ene Reaction with Ketones: Evidence for a Retro-Ene Process. New Journal of Chemistry, 39, 7453-7458. https://doi.org/10.1039/c5nj01286d |
[12] | Ludwig, J.R., Zimmerman, P.M., Gianino, J.B. and Schindler, C.S. (2016) Iron(III)-Catalysed Carbonyl-Olefin Metathesis. Nature, 533, 374-379. https://doi.org/10.1038/nature17432 |
[13] | McAtee, C.C., Riehl, P.S. and Schindler, C.S. (2017) Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 139, 2960-2963. https://doi.org/10.1021/jacs.7b01114 |
[14] | Tran, U.P.N., Oss, G., Pace, D.P., Ho, J. and Nguyen, T.V. (2018) Tropylium-Promoted Carbonyl-Olefin Metathesis Reactions. Chemical Science, 9, 5145-5151. https://doi.org/10.1039/c8sc00907d |
[15] | Tran, U.P.N., Oss, G., Breugst, M., Detmar, E., Pace, D.P., Liyanto, K., et al. (2018) Carbonyl-Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catalysis, 9, 912-919. https://doi.org/10.1021/acscatal.8b03769 |
[16] | Wang, R., Chen, Y., Shu, M., Zhao, W., Tao, M., Du, C., et al. (2020) AuCl3-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Chemistry—A European Journal, 26, 1941-1946. https://doi.org/10.1002/chem.201905199 |
[17] | Zhang, Y., Jermaks, J., MacMillan, S.N. and Lambert, T.H. (2019) Synthesis of 2H-Chromenes via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. ACS Catalysis, 9, 9259-9264. https://doi.org/10.1021/acscatal.9b03656 |
[18] | Djurovic, A., Vayer, M., Li, Z., Guillot, R., Baltaze, J., Gandon, V., et al. (2019) Synthesis of Medium-Sized Carbocycles by Gallium-Catalyzed Tandem Carbonyl-Olefin Metathesis/Transfer Hydrogenation. Organic Letters, 21, 8132-8137. https://doi.org/10.1021/acs.orglett.9b03240 |
[19] | Becker, M.R., Reid, J.P., Rykaczewski, K.A. and Schindler, C.S. (2020) Models for Understanding Divergent Reactivity in Lewis Acid-Catalyzed Transformations of Carbonyls and Olefins. ACS Catalysis, 10, 4387-4397. https://doi.org/10.1021/acscatal.0c00489 |
[20] | Schneider, C.W. and Devery, J.J. (2025) Theoretical Investigations of Substrate Behavior in FeCl3-Catalyzed Carbonyl-Olefin Metathesis. ACS Omega, 10, 10283-10293. https://doi.org/10.1021/acsomega.4c09880 |
[21] | Shambayati, S., Crowe, W.E. and Schreiber, S.L. (1990) On the Conformation and Structure of Organometal Complexes in the Solid State: Two Studies Relevant to Chemical Synthesis. Angewandte Chemie International Edition, 29, 256-272. https://doi.org/10.1002/anie.199002561 |
[22] | Davis, A.J., Watson, R.B., Nasrallah, D.J., Gomez-Lopez, J.L. and Schindler, C.S. (2020) Superelectrophilic Aluminium(III)-Ion Pairs Promote a Distinct Reaction Path for Carbonyl-Olefin Ring-Closing Metathesis. Nature Catalysis, 3, 787-796. https://doi.org/10.1038/s41929-020-00499-5 |
[23] | Rykaczewski, K.A., Groso, E.J., Vonesh, H.L., Gaviria, M.A., Richardson, A.D., Zehnder, T.E., et al. (2020) Tetrahydropyridines via FeCl3-Catalyzed Carbonyl-Olefin Metathesis. Organic Letters, 22, 2844-2848. https://doi.org/10.1021/acs.orglett.0c00918 |
[24] | Zhang, Y., Sim, J.H., MacMillan, S.N. and Lambert, T.H. (2020) Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Organic Letters, 22, 6026-6030. https://doi.org/10.1021/acs.orglett.0c02116 |
[25] | Li, Y., Sun, Y., Meng, L., Li, Q. and Zeng, Y. (2022) Halogen Bond Catalysis on Carbonyl-Olefin Ring-Closing Metathesis Reaction: Comparison with Lewis Acid Catalysis. Chinese Journal of Chemistry, 40, 1275-1284. https://doi.org/10.1002/cjoc.202100891 |
[26] | To, T.A., Mai, B.K. and Nguyen, T.V. (2022) Toward Homogeneous Bronsted-Acid-Catalyzed Intramolecular Carbonyl-Olefin Metathesis Reactions. Organic Letters, 24, 7237-7241. https://doi.org/10.1021/acs.orglett.2c03099 |
[27] | Anh To, T., Pei, C., Koenigs, R.M. and Vinh Nguyen, T. (2022) Hydrogen Bonding Networks Enable Brønsted Acid‐catalyzed Carbonyl‐olefin Metathesis. Angewandte Chemie International Edition, 61, e202117366. https://doi.org/10.1002/anie.202117366 |
[28] | Chen, Y., Liu, D., Wang, R., Xu, L., et al. (2022) Bronsted Acid-Catalyzed Carbonyl-Olefin Metathesis: Synthesis of Phenanthrenes via Phosphomolybdic Acid as a Catalyst. The Journal of Organic Chemistry, 87, 351-362. https://doi.org/10.1021/acs.joc.1c02385 |
[29] | Fu, G.C. and Grubbs, R.H. (1993) Synthesis of Cycloalkenes via Alkylidene-Mediated Olefin Metathesis and Carbonyl Olefination. Journal of the American Chemical Society, 115, 3800-3801. https://doi.org/10.1021/ja00062a066 |
[30] | Bennasar, M.L., Roca, T., Monerris, M. and García-Díaz, D. (2006) Sequential n-Acylamide Methylenation-Enamide Ring-Closing Metathesis: Construction of Benzo-Fused Nitrogen Heterocycles. The Journal of Organic Chemistry, 71, 7028-7034. https://doi.org/10.1021/jo061180j |
[31] | Iyer, K. and Rainier, J.D. (2007) Olefinic Ester and Diene Ring-Closing Metathesis Using a Reduced Titanium Alkylidene. Journal of the American Chemical Society, 129, 12604-12605. https://doi.org/10.1021/ja073880r |
[32] | Riehl, P.S., Nasrallah, D.J. and Schindler, C.S. (2019) Catalytic, Transannular Carbonyl-Olefin Metathesis Reactions. Chemical Science, 10, 10267-10274. https://doi.org/10.1039/c9sc03716k |