全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于3,4-二氯苯乙酸构筑的荧光材料的制备、结构表征及光谱性能研究
Synthesis, Structural Characterization and Spectral Properties of Fluorescent Based on 3,4-Dichlorophenylacetic Acid

DOI: 10.12677/amc.2025.133032, PP. 287-299

Keywords: 锌配合物,钡配合物,3,4-二氯苯乙酸,荧光性能
Zinc Complex
, Barium Complex, 3,4-Dichlorophenylacetic Acid, Luminescent Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了2个含3,4-二氯苯乙酸的锌和钡金属离子具有荧光性能发光材料,并采用X-射线单晶衍射、红外光谱及元素分析对其结构进行表征。配合物1为含锌化合物,配合物2为含钡化合物,两个配合物均为一维链状结构,结构单元之间通过C-H···O、C-H···Cl氢键作用组装成三维超分子网络结构。测试了两种配合物的紫外可见吸收和荧光性质。测试结果显示,两个配合物在不同溶剂中紫外可见吸收峰均在228 nm,不同溶剂中荧光发射峰均在546 nm,以及配合物1和配合物2的固态荧光发射峰分别在398 nm和452 nm。两种配合物可作为潜在的荧光材料。
Two fluorescent materials containing zinc and barium metal ions with 3,4-dichlorophenylacetic acid were synthesized and characterized by X-ray crystal diffraction, IR and elemental analysis. Complex 1 is a zinc-containing compound, and complex 2 is a barium-containing compound. Both complexes have a 1D chain structure. The structural units are interconnected via C-H···O and C-H···Cl hydrogen bonds to form a 3D supramolecular network. The UV-Vis absorption and fluorescence properties of both complexes were investigated. Experimental results indicate that the UV-Vis absorption peaks of both complexes in different solvents are centered at 228 nm, with fluorescence emission peaks observed at 546 nm in solution. The solid-state fluorescence emission peaks for complex 1 and complex 2 are located at 398 nm and 452 nm, respectively. These complexes demonstrate potential as optical materials.

References

[1]  Sun, Z., Xu, C., Li, Z., Guo, F., Liu, B., Liu, J., et al. (2022) Construction of Organic-Inorganic Hybrid Photoanodes with Metal Phthalocyanine Complexes to Improve Photoelectrochemical Water Splitting Performance. New Journal of Chemistry, 46, 9111-9118.
https://doi.org/10.1039/d2nj00762b
[2]  Dhouib, I., Ouasri, A., Guionneau, P. and Elaoud, Z. (2022) A New Organic-Inorganic Hybrid Compound Based on Sulfate: Structural Characterization, DFT Study, Hirshfeld Analysis, and Electrical, Vibrational and Thermal Properties. Journal of Physics and Chemistry of Solids, 165, Article 110654.
https://doi.org/10.1016/j.jpcs.2022.110654
[3]  Manna, K., Ji, P., Greene, F.X. and Lin, W. (2016) Metal-Organic Framework Nodes Support Single-Site Magnesium–alkyl Catalysts for Hydroboration and Hydroamination Reactions. Journal of the American Chemical Society, 138, 7488-7491.
https://doi.org/10.1021/jacs.6b03689
[4]  Jana, S., Karim, S., Paul, S., Zangrando, E., Fallah, M.S.E., Das, D., et al. (2021) Carboxylato Bridging Cu(II) Coordination Polymer: Structure, Magnetism and Catalytic Reduction of Nitrophenols. Journal of Molecular Structure, 1245, Article 131058.
https://doi.org/10.1016/j.molstruc.2021.131058
[5]  Bhunia, S., Dutta, B., Pal, K., Chandra, A., Jana, K. and Sinha, C. (2021) Ultra-Trace Level Detection of Cu2+ in an Aqueous Medium by Novel Zn(II)-Dicarboxylato-Pyridyl Coordination Polymers and Cell Imaging with Hepg2 Cells. New Journal of Chemistry, 45, 13941-13948.
https://doi.org/10.1039/d1nj00917f
[6]  Jana, S., Ray, A., Chandra, A., El Fallah, M.S., Das, S. and Sinha, C. (2019) Studies on Magnetic and Dielectric Properties of Antiferromagnetically Coupled Dinuclear Cu(II) in a One-Dimensional Cu(II) Coordination Polymer. ACS Omega, 5, 274-280.
https://doi.org/10.1021/acsomega.9b02650
[7]  Wang, H., Xu, J., Zhang, D., Chen, Q., Wen, R., Chang, Z., et al. (2015) Crystalline Capsules: Metal-Organic Frameworks Locked by Size-Matching Ligand Bolts. Angewandte Chemie International Edition, 54, 5966-5970.
https://doi.org/10.1002/anie.201500468
[8]  Chandra, A., Dutta, B., Pal, K., Jana, K. and Sinha, C. (2021) Designing of an Adipic Acid Bridged Zn(II) Coordination Polymer: Synthesis and Biological Study. Journal of Molecular Structure, 1243, Article 130923.
https://doi.org/10.1016/j.molstruc.2021.130923
[9]  Wu, P., Liu, Y., Liu, Y., Wang, J., Li, Y., Liu, W., et al. (2015) Cadmium-Based Metal-Organic Framework as a Highly Selective and Sensitive Ratiometric Luminescent Sensor for Mercury(II). Inorganic Chemistry, 54, 11046-11048.
https://doi.org/10.1021/acs.inorgchem.5b01758
[10]  Wang, C., Xia, Y., Yao, Z., Xu, J., Chang, Z. and Bu, X. (2019) Two Luminescent Coordination Polymers as Highly Selective and Sensitive Chemosensors for Crvi-Anions in Aqueous Medium. Dalton Transactions, 48, 387-394.
https://doi.org/10.1039/c8dt04230f
[11]  Liu, H., Wang, Y., Qin, Z., Liu, D., Xu, H., Dong, H., et al. (2021) Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. The Journal of Physical Chemistry Letters, 12, 1612-1630.
https://doi.org/10.1021/acs.jpclett.0c02988
[12]  Hu, T., Wang, H., Li, B., Krishna, R., Wu, H., Zhou, W., et al. (2015) Microporous Metal-Organic Framework with Dual Functionalities for Highly Efficient Removal of Acetylene from Ethylene/acetylene Mixtures. Nature Communications, 6, Article No.7328.
https://doi.org/10.1038/ncomms8328
[13]  Li, X., Yang, L., Zhao, L., Wang, X., Shao, K. and Su, Z. (2016) Luminescent Metal-Organic Frameworks with Anthracene Chromophores: Small-Molecule Sensing and Highly Selective Sensing for Nitro Explosives. Crystal Growth & Design, 16, 4374-4382.
https://doi.org/10.1021/acs.cgd.6b00482
[14]  Yoon, M., Srirambalaji, R. and Kim, K. (2011) Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112, 1196-1231.
https://doi.org/10.1021/cr2003147
[15]  Sun, J., Zhang, R., Zhou, X., Li, Z., Wu, D. and Zhai, B. (2021) Structure and Magnetic Properties of One Carboxylate-Bridged Linear Trinuclear [Ni3] and One Paddle-Wheel Dinuclear [Cu2] Cluster. Inorganic Chemistry Communications, 127, Article 108548.
https://doi.org/10.1016/j.inoche.2021.108548
[16]  Viola Muhammad, N., Ikram, M., Rehman, S., Ali, S., Akhtar, M.N., et al. (2019) A Paddle Wheel Dinuclear Copper(II) Carboxylate: Crystal Structure, Thermokinetic and Magnetic Properties. Journal of Molecular Structure, 1196, 754-759.
https://doi.org/10.1016/j.molstruc.2019.06.095
[17]  石文杰, 陆凡, 陈梦薇, 等. 咪唑鎓盐功能化锆基金属有机笼的合成及其主客体性质[J]. 无机化学学报, 2025, 41(1): 105-113.
[18]  Sheldrick, G.M. (1996) SADABS. Siemens Area Detector Absorption Corrected Software. University of Göttingen.
[19]  Sheldrick, G.M. (1997) SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen.
[20]  黄秋萍, 曾振芳, 黄秋婵, 等. 一维链状锌配合物的合成、晶体结构及性质研究[J]. 化学试剂, 2020, 42(10): 1207-1212.
[21]  李波, 王霏宇, 沈红, 等. 基于4-羟基间苯二甲酸和含氮杂环配体的Zn(Ⅱ)配合物的合成、晶体结构与荧光性质研究[J]. 人工晶体学报, 2024, 53(4): 692-700.
[22]  张泉平, 杜海燕, 孙家跃. 芳香羧酸类铕(III)三元有机配合物的合成与荧光性质[J]. 化工新型材料, 2007(11): 20-22.
[23]  王慧娟, 蒋悦, 徐海兵. 六齿喹啉类铒配合物结构表征及其发光性能研究[J]. 湖北大学学报(自然科学版), 2025, 47(1): 1-7.
[24]  陆继果, 霍延平, 方小明, 等. 含三氟苯基8-羟基喹啉锌配合物的合成及紫外、荧光性能对比研究[J]. 分析测试学报, 2014, 33(9): 993-999.
[25]  杨知微, 姚默鎏昕, 黄光英, 等. Ir(p-tBu-ppy)3的晶体结构及溶剂对光物理性能的影响[J]. 贵金属, 2025, 46(2): 1-5.
[26]  李波, 沈红, 毛逢银, 等. 基于混合配体的Zn(II)/Co(II)配合物的晶体结构、荧光性能和磁性[J]. 合成化学, 2023, 31(11): 895-903.
[27]  左锣, 冯建华, 郭莉, 等. 3,4-吡啶二酸钡配合物的合成、结构、荧光和热稳定性研究(英文) [J]. 无机化学学报, 2013, 29(9): 1979-1984.
[28]  李丽, 陈亚芍, 赵丽芳. 稀土配合物{La[o-C6H4(NO2)(CO2)]3·(DMF)2}2的晶体结构及其荧光性能[J]. 高等学校化学学报, 2006(2): 199-203.
[29]  周智华, 徐国荣, 唐安平. 苯甲酸-邻啡罗啉铕(镝)钡配合物的合成及其表征[J]. 有色金属, 2006(1): 64-68.
[30]  Zhang, X., Ge, C., Zhang, N., Duan, Y., Wang, Y., Zhao, L., et al. (2019) A MOF Material Based on Zinc (II) and Mixed Ligands: Synthesis, Structure and Luminescence Behavior. Inorganica Chimica Acta, 496, Article 119035.
https://doi.org/10.1016/j.ica.2019.119035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133