全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cross-Dataset Transcriptomic Analysis Reveals Distinct Immune Regulatory Networks in Non-Tuberculous Mycobacterial Disease

DOI: 10.4236/abb.2025.167018, PP. 277-290

Keywords: Non-Tuberculous Mycobacteria, Transcriptomics, Immune Networks, CD36, Biomarkers, Precision Medicine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Non-tuberculous mycobacterial (NTM) infections present increasing global health challenges with heterogeneous clinical manifestations and variable immune responses. Despite the growing incidence worldwide, the molecular mechanisms underlying systemic immune dysfunction in NTM disease remain poorly understood. Methods: We performed comprehensive cross-dataset transcriptomic analysis using two independent RNA-seq datasets (GSE97298 and GSE290289) comprising 65 peripheral blood samples from NTM patients and controls. Differential gene expression analysis was conducted using stringent criteria (|log2FC| > 1.3, P < 0.05), followed by intersection analysis, protein-protein interaction (PPI) network construction, and functional enrichment analysis. Results: Our analysis identified 10 commonly dysregulated genes across both datasets, forming a highly connected regulatory network with a network density of 0.267. CD36 emerged as the central hub with the highest degree centrality (0.556) and betweenness centrality (0.722), showing dataset-specific regulation patterns. The network revealed coordinated immune dysfunction characterized by downregulation of T-cell signaling components (CD3E, GZMK) and variable innate immune responses. Functional analysis demonstrated enrichment in pathogen recognition pathways, lipid metabolism, and inflammatory response regulation. Conclusions: This study provides the first comprehensive cross-dataset analysis of systemic immune networks in NTM disease, identifying CD36 as a central network hub with variable expression patterns. Our findings suggest molecular heterogeneity in NTM disease and identify potential biomarkers that warrant further validation in clinically well-characterized patient cohorts.

References

[1]  Dahl, V.N., Mølhave, M., Fløe, A., van Ingen, J., Schön, T., Lillebaek, T., et al. (2022) Global Trends of Pulmonary Infections with Nontuberculous Mycobacteria: A Systematic Review. International Journal of Infectious Diseases, 125, 120-131.
https://doi.org/10.1016/j.ijid.2022.10.013
[2]  Cruz-Aguilar, M., Castillo-Rodal, A.I., Arredondo-Hernández, R. and López-Vidal, Y. (2021) Non-Tuberculous Mycobacteria Immunopathogenesis: Closer than They Appear. A Prime of Innate Immunity Trade-Off and NTM Ways into Virulence. Scandinavian Journal of Immunology, 94, e13035.
https://doi.org/10.1111/sji.13035
[3]  Prevots, D.R. and Marras, T.K. (2015) Epidemiology of Human Pulmonary Infection with Nontuberculous Mycobacteria. Clinics in Chest Medicine, 36, 13-34.
https://doi.org/10.1016/j.ccm.2014.10.002
[4]  Cowman, S., van Ingen, J., Griffith, D.E. and Loebinger, M.R. (2019) Non-Tuberculous Mycobacterial Pulmonary Disease. European Respiratory Journal, 54, Article 1900250.
https://doi.org/10.1183/13993003.00250-2019
[5]  Iseman, M. and Chan, E. (2013) Underlying Host Risk Factors for Nontuberculous Mycobacterial Lung Disease. Seminars in Respiratory and Critical Care Medicine, 34, 110-123.
https://doi.org/10.1055/s-0033-1333573
[6]  Henkle, E. and Winthrop, K.L. (2015) Nontuberculous Mycobacteria Infections in Immunosuppressed Hosts. Clinics in Chest Medicine, 36, 91-99.
https://doi.org/10.1016/j.ccm.2014.11.002
[7]  Stout, J.E., Koh, W. and Yew, W.W. (2016) Update on Pulmonary Disease Due to Non-Tuberculous Mycobacteria. International Journal of Infectious Diseases, 45, 123-134.
https://doi.org/10.1016/j.ijid.2016.03.006
[8]  Baldwin, S.L., Larsen, S.E., Ordway, D., Cassell, G. and Coler, R.N. (2019) The Complexities and Challenges of Preventing and Treating Nontuberculous Mycobacterial Diseases. PLOS Neglected Tropical Diseases, 13, e0007083.
https://doi.org/10.1371/journal.pntd.0007083
[9]  Abe, Y., Fukushima, K., Hosono, Y., Matsumoto, Y., Motooka, D., Ose, N., et al. (2020) Host Immune Response and Novel Diagnostic Approach to NTM Infections. International Journal of Molecular Sciences, 21, Article 4351.
https://doi.org/10.3390/ijms21124351
[10]  Chandra, P., Grigsby, S.J. and Philips, J.A. (2022) Immune Evasion and Provocation by Mycobacterium Tuberculosis. Nature Reviews Microbiology, 20, 750-766.
https://doi.org/10.1038/s41579-022-00763-4
[11]  Bashford, J., Flowers, W., Haworth, C., Ryan, J., Cervi, A., Dulayymi, J.R.A., et al. (2023) Evaluation of a Novel ELISA Test Using Synthetic Mycolic Acid Antigens for Serodiagnosis of Non-Tuberculous Mycobacterial (NTM) Infections. Thorax, 78, 309-312.
https://doi.org/10.1136/thorax-2022-218800
[12]  Tortoli, E. (2014) Microbiological Features and Clinical Relevance of New Species of the Genus Mycobacterium. Clinical Microbiology Reviews, 27, 727-752.
https://doi.org/10.1128/cmr.00035-14
[13]  Brown-Elliott, B.A. and Philley, J.V. (2017) Rapidly Growing Mycobacteria. Microbiology Spectrum, 5, 1-19.
https://doi.org/10.1128/microbiolspec.tnmi7-0027-2016
[14]  Brown-Elliott, B.A., Nash, K.A. and Wallace, R.J. (2012) Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria. Clinical Microbiology Reviews, 25, 721-721.
https://doi.org/10.1128/cmr.000055-12
[15]  Cowman, S.A., Jacob, J., Hansell, D.M., Kelleher, P., Wilson, R., Cookson, W.O.C., et al. (2018) Whole-Blood Gene Expression in Pulmonary Nontuberculous Mycobacterial Infection. American Journal of Respiratory Cell and Molecular Biology, 58, 510-518.
https://doi.org/10.1165/rcmb.2017-0230oc
[16]  Alam, A., Imam, N., Ahmed, M.M., Tazyeen, S., Tamkeen, N., Farooqui, A., et al. (2019) Identification and Classification of Differentially Expressed Genes and Network Meta-Analysis Reveals Potential Molecular Signatures Associated with Tuberculosis. Frontiers in Genetics, 10, Article 932.
https://doi.org/10.3389/fgene.2019.00932
[17]  Daley, C.L., Iaccarino, J.M., Lange, C., Cambau, E., Wallace, R.J., Andrejak, C., et al. (2020) Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clinical Infectious Diseases, 71, e1-e36.
https://doi.org/10.1093/cid/ciaa241
[18]  Cho, E.H., Huh, H.J., Song, D.J., Moon, S.M., et al. (2017) Differences in Drug Susceptibility Pattern between Mycobacterium Avium and Mycobacterium Intracellulare Isolated in Respiratory Specimens. Journal of Infection and Chemotherapy, 24, 315-318.
[19]  Diel, R., Lipman, M. and Hoefsloot, W. (2018) High Mortality in Patients with Mycobacterium Avium Complex Lung Disease: A Systematic Review. BMC Infectious Diseases, 18, Article No. 206.
https://doi.org/10.1186/s12879-018-3113-x
[20]  Aziz, D.B., Low, J.L., Wu, M.L., et al. (2017) Rifabutin Is Active against Mycobacterium Abscessus Complex. Antimicrobial Agents and Chemotherapy, 61, e00155-17.
[21]  Baya, B., Achenbach, C.J., Kone, B., Toloba, Y., Dabitao, D.K., Diarra, B., et al. (2019) Clinical Risk Factors Associated with Multidrug-Resistant Tuberculosis (MDR-TB) in Mali. International Journal of Infectious Diseases, 81, 149-155.
https://doi.org/10.1016/j.ijid.2019.02.004
[22]  Bartlett, H.P., Dawson, C.C., Glickman, C.M., Osborn, D.W., Evans, C.R., Garcia, B.J., et al. (2024) Targeting Intracellular Nontuberculous Mycobacteria and M. tuberculosis with a Bactericidal Enzymatic Cocktail. Microbiology Spectrum, 12, e0353423.
https://doi.org/10.1128/spectrum.03534-23
[23]  Chin, K.L., Sarmiento, M.E., Mustapha, Z.A., Jani, J., Jamal, N.B., Stanis, C.S., et al. (2020). Identification of a Mycobacterium Tuberculosis-Specific Gene Marker for Diagnosis of Tuberculosis Using Semi-Nested Melt-MAMA qPCR (lprM-MAMA). Tuberculosis, 125, Article 102003.
https://doi.org/10.1016/j.tube.2020.102003
[24]  Arya, R., Shakya, H., Chaurasia, R., Kumar, S., Vinetz, J.M. and Kim, J.J. (2024) Computational Reassessment of RNA-Seq Data Reveals Key Genes in Active Tuberculosis. PLOS ONE, 19, e0305582.
https://doi.org/10.1371/journal.pone.0305582
[25]  Ayalvari, S., Kaedi, M. and Sehhati, M. (2024) A Modified Multiple-Criteria Decision-Making Approach Based on a Protein-Protein Interaction Network to Diagnose Latent Tuberculosis. BMC Medical Informatics and Decision Making, 24, Article No. 319.
https://doi.org/10.1186/s12911-024-02668-z
[26]  Dedrick, R.M., Guerrero-Bustamante, C.A., Garlena, R.A., Russell, D.A., Ford, K., Harris, K., et al. (2019) Engineered Bacteriophages for Treatment of a Patient with a Disseminated Drug-Resistant Mycobacterium Abscessus. Nature Medicine, 25, 730-733.
https://doi.org/10.1038/s41591-019-0437-z
[27]  Amaral, E.P., Costa, D.L., Namasivayam, S., Riteau, N., Kamenyeva, O., Mittereder, L., et al. (2019) A Major Role for Ferroptosis in Mycobacterium Tuberculosis-Induced Cell Death and Tissue Necrosis. Journal of Experimental Medicine, 216, 556-570.
https://doi.org/10.1084/jem.20181776

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133