This paper reviews fault identification and predictive maintenance techniques essential for the reliable operation of high-voltage power systems. The increasing integration of renewable energy sources and distributed generation imposes significant operational challenges, necessitating advanced maintenance strategies beyond traditional reactive and preventive approaches. Emphasis is placed on condition-based and online monitoring techniques that leverage artificial intelligence, machine learning, and IoT for timely fault detection and accurate prediction of equipment lifespan. The study examines methodologies applied to critical high-voltage components such as circuit breakers, transformers, and cables, detailing their operational principles, advantages, limitations, and evaluation metrics. While substantial progress has been made in enhancing system reliability and reducing downtime, challenges related to data quality, model complexity, and cybersecurity remain, highlighting areas for future research and development.
References
[1]
Bindi, M., Piccirilli, M.C., Luchetta, A. and Grasso, F. (2023) A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines. Energies, 16, Article 7317. https://doi.org/10.3390/en16217317
[2]
Zhu, T., etal. (2019) A Survey of Predictive Maintenance: Systems, Purposes and Approaches. arXiv: 1912.07383.
[3]
Vianna, E.A.L., Abaide, A.R., Canha, L.N. and Miranda, V. (2017) Substations SF6 Circuit Breakers: Reliability Evaluation Based on Equipment Condition. ElectricPowerSystemsResearch, 142, 36-46. https://doi.org/10.1016/j.epsr.2016.08.018
[4]
Chennakeshava, R., etal. (2021) A Review on Switchgear Analysis and Common Challenges Observed in Switchgear. International Journal of Engineering Research & Technology, 10, 251-254.
[5]
Johal, H. and Mousavi, M.J. (2008) Coil Current Analysis Method for Predictive Maintenance of Circuit Breakers. 2008 IEEE/PESTransmissionandDistributionConferenceandExposition, Chicago, 21-24 April 2008, 1-7. https://doi.org/10.1109/tdc.2008.4517278
[6]
Wang, S., Zhou, Y. and Ma, Z. (2024) Research on Fault Identification of High-Voltage Circuit Breakers with Characteristics of Voiceprint Information. ScientificReports, 14, Article No. 9340. https://doi.org/10.1038/s41598-024-59999-0
[7]
Guan, Y., etal. (2018) Review on Mechanical Fault Diagnosis Methods for High-Voltage Circuit Breakers. High Voltage Apparatus, 54, 10-19.
[8]
Hoidalen, H.K. and Runde, M. (2005) Continuous Monitoring of Circuit Breakers Using Vibration Analysis. IEEETransactionsonPowerDelivery, 20, 2458-2465. https://doi.org/10.1109/tpwrd.2005.855486
[9]
Chen, H., Han, C., Zhang, Y., Ma, Z., Zhang, H. and Yuan, Z. (2023) Investigation on the Fault Monitoring of High-Voltage Circuit Breaker Using Improved Deep Learning. PLOSONE, 18, e0295278. https://doi.org/10.1371/journal.pone.0295278
[10]
Li, T., Xia, Y., Pang, X., Zhu, J., Fan, H., Zhen, L., etal. (2024) Mechanical fault diagnosis of high voltage circuit breaker using multimodal data fusion. PeerJComputerScience, 10, e2248. https://doi.org/10.7717/peerj-cs.2248
[11]
Cao, S., Zhao, T., Wang, G., Zhang, T., Liu, C., Liu, Q., etal. (2023) A Mechanical Defect Localization and Identification Method for High-Voltage Circuit Breakers Based on the Segmentation of Vibration Signals and Extraction of Chaotic Features. Sensors, 23, Article 7201. https://doi.org/10.3390/s23167201
[12]
Tan, Y., Hu, E., Liu, Y., Li, J. and Chen, W. (2024) Review of Digital Vibration Signal Analysis Techniques for Fault Diagnosis of High-Voltage Circuit Breakers. IEEETransactionsonDielectricsandElectricalInsulation, 31, 404-418. https://doi.org/10.1109/tdei.2023.3339114
[13]
Chen, L. and Wan, S. (2020) Mechanical Fault Diagnosis of High-Voltage Circuit Breakers Using Multi-Segment Permutation Entropy and a Density-Weighted One-Class Extreme Learning Machine. MeasurementScienceandTechnology, 31, Article ID: 085107. https://doi.org/10.1088/1361-6501/ab7deb
[14]
Rudsari, F.N., Razi-Kazemi, A.A. and Shoorehdeli, M.A. (2019) Fault Analysis of High-Voltage Circuit Breakers Based on Coil Current and Contact Travel Waveforms through Modified SVM Classifier. IEEETransactionsonPowerDelivery, 34, 1608-1618. https://doi.org/10.1109/tpwrd.2019.2915110
[15]
Fylladitakis, E.D. and Moronis, A.X. (2024) Design and Development of a Prototype Operating Parameters Monitoring System for High-Voltage Switchgear Using IoT Technologies. IEEETransactionsonPowerDelivery, 39, 1376-1385. https://doi.org/10.1109/tpwrd.2024.3363094
[16]
Meštrović, K., etal. (2009) New Concept of High-Voltage Switchgear Online Monitoring System. 16thInternationalSymposiumon High-Voltage Engineering, Cape Town, 24-28 August 2009.
[17]
Faiz, J. and Heydarabadi, R. (2014) Diagnosing Power Transformers Faults. RussianElectricalEngineering, 85, 785-793. https://doi.org/10.3103/s1068371214120207
[18]
Abbasi, A.R. (2022) Fault Detection and Diagnosis in Power Transformers: A Comprehensive Review and Classification of Publications and Methods. ElectricPowerSystemsResearch, 209, Article ID: 107990. https://doi.org/10.1016/j.epsr.2022.107990
[19]
Bustamante, S., Manana, M., Arroyo, A., Laso, A. and Martinez, R. (2024) Evolution of Graphical Methods for the Identification of Insulation Faults in Oil-Immersed Power Transformers: A Review. RenewableandSustainableEnergyReviews, 199, Article ID: 114473. https://doi.org/10.1016/j.rser.2024.114473
[20]
Tzelepis, D., Psaras, V., Tsotsopoulou, E., Mirsaeidi, S., Dysko, A., Hong, Q., etal. (2020) Voltage and Current Measuring Technologies for High Voltage Direct Current SuperGrids: A Technology Review Identifying the Options for Protection, Fault Location and Automation Applications. IEEEAccess, 8, 203398-203428. https://doi.org/10.1109/access.2020.3035905
[21]
Hijazi, M.E.A. and Basak, A. (1993) Analysis of Integral Method for Fault Detection in Transformers. IEEETransactionsonMagnetics, 29, 3213-3215. https://doi.org/10.1109/20.281140
[22]
Yabe, K. (1997) Power Differential Method for Discrimination between Fault and Magnetizing Inrush Current in Transformers. IEEETransactionsonPowerDelivery, 12, 1109-1118. https://doi.org/10.1109/61.636909
[23]
Kirkbas, A., Demircali, A., Koroglu, S. and Kizilkaya, A. (2020) Fault Diagnosis of Oil-Immersed Power Transformers Using Common Vector Approach. ElectricPowerSystemsResearch, 184, Article ID: 106346. https://doi.org/10.1016/j.epsr.2020.106346
[24]
Patil, P.G., Failler, P. and Alam, K. (2019) Introduction to the Special Issue on the Blue Economy of Bangladesh. JournalofOceanandCoastalEconomics, 6, Article 1. https://doi.org/10.15351/2373-8456.1118
Phadke, A. and Thorp, J. (1983) A New Computer-Based Flux-Restrained Current-Differential Relay for Power Transformer Protection. IEEETransactionsonPowerApparatusandSystems, 102, 3624-3629. https://doi.org/10.1109/tpas.1983.317711
[27]
Vazquez, E., Mijares, I.I., Chacon, O.L. and Conde, A. (2006) Transformer Differential Protection Using Principal Component Analysis. 2006 IEEEPowerEngineeringSocietyGeneralMeeting, Montreal, 18-22 June 2006, 6. https://doi.org/10.1109/pes.2006.1709128
[28]
Kiliç, U. (2009) Using Canola Forage as Roughage Source in Ruminant Nutrition. JournalofLalahanLivestockResearchInstitute, 49, 125-135.
[29]
Kazemi, Z., Naseri, F., Yazdi, M. and Farjah, E. (2021) An EKF‐SVM Machine Learning‐based Approach for Fault Detection and Classification in Three‐phase Power Transformers. IETScience, Measurement&Technology, 15, 130-142. https://doi.org/10.1049/smt2.12015
[30]
Simões, L.D., Costa, H.J.D., Aires, M.N.O., Medeiros, R.P., Costa, F.B. and Bretas, A.S. (2021) A Power Transformer Differential Protection Based on Support Vector Machine and Wavelet Transform. ElectricPowerSystemsResearch, 197, Article ID: 107297. https://doi.org/10.1016/j.epsr.2021.107297
[31]
Bejmert, D., Rebizant, W. and Schiel, L. (2014) Transformer Differential Protection with Fuzzy Logic Based Inrush Stabilization. InternationalJournalofElectricalPower&EnergySystems, 63, 51-63. https://doi.org/10.1016/j.ijepes.2014.05.056
[32]
Afrasiabi, S., Afrasiabi, M., Parang, B. and Mohammadi, M. (2020) Integration of Accelerated Deep Neural Network into Power Transformer Differential Protection. IEEETransactionsonIndustrialInformatics, 16, 865-876. https://doi.org/10.1109/tii.2019.2929744
[33]
Afrasiabi, S., Afrasiabi, M., Parang, B. and Mohammadi, M. (2020) Designing a Composite Deep Learning Based Differential Protection Scheme of Power Transformers. AppliedSoftComputing, 87, Article ID: 105975. https://doi.org/10.1016/j.asoc.2019.105975
[34]
Peng, F., Gao, H., Huang, J., Guo, Y., Liu, Y. and Zhang, Y. (2023) Power Differential Protection for Transformer Based on Fault Component Network. IEEETransactionsonPowerDelivery, 38, 2464-2477. https://doi.org/10.1109/tpwrd.2023.3244535
[35]
Chen, S., Tai, N., Fan, C., Liu, J. and Hong, S. (2018) Sequence-Component-Based Current Differential Protection for Transmission Lines Connected with IIGs. IETGeneration, Transmission&Distribution, 12, 3086-3096. https://doi.org/10.1049/iet-gtd.2017.1507
[36]
Yadaiah, N. and Ravi, N. (2007) Fault Detection Techniques for Power Transformers. 2007 IEEE/IASIndustrial&CommercialPowerSystemsTechnicalConference, Edmonton, 6-11 May 2007, 1-9. https://doi.org/10.1109/icps.2007.4292099
[37]
Nemeth, B., Laboncz, S. and Kiss, I. (2009) Condition Monitoring of Power Transformers Using DGA and Fuzzy Logic. 2009 IEEEElectricalInsulationConference, Montreal, 31 May-3 June 2009, 373-376. https://doi.org/10.1109/eic.2009.5166373
[38]
de Faria, H., Costa, J.G.S. and Olivas, J.L.M. (2015) A Review of Monitoring Methods for Predictive Maintenance of Electric Power Transformers Based on Dissolved Gas Analysis. RenewableandSustainableEnergyReviews, 46, 201-209. https://doi.org/10.1016/j.rser.2015.02.052
[39]
Wang, X., Li, Q., Yang, R., Li, C. and Zhang, Y. (2015) Diagnosis of Solid Insulation Deterioration for Power Transformers with Dissolved Gas Analysis-Based Time Series Correlation. IETScience, Measurement&Technology, 9, 393-399. https://doi.org/10.1049/iet-smt.2014.0074
[40]
Odongo, G., Musabe, R. and Hanyurwimfura, D. (2021) A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers. Algorithms, 14, Article 128. https://doi.org/10.3390/a14040128
[41]
Liu, Y., Song, B., Wang, L., Gao, J. and Xu, R. (2020) Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN. AppliedSciences, 10, 4440. https://doi.org/10.3390/app10134440
[42]
Malik, H. and Mishra, S. (2016) Application of Gene Expression Programming (GEP) in Power Transformers Fault Diagnosis Using DGA. IEEETransactionsonIndustryApplications, 52, 4556-4565. https://doi.org/10.1109/tia.2016.2598677
[43]
Zhang, Z., Wu, Y., Zhang, R., Jiang, P., Liu, G., Ahmed, S., etal. (2019) Novel Transformer Fault Identification Optimization Method Based on Mathematical Statistics. Mathematics, 7, Article 288. https://doi.org/10.3390/math7030288
[44]
Sun, Y. and Ma, H. (2024) Research Progress on Oil-Immersed Transformer Mechanical Condition Identification Based on Vibration Signals. RenewableandSustainable Energy Reviews, 196, Article ID: 114327. https://doi.org/10.1016/j.rser.2024.114327
[45]
Li, Q., Zhao, T., Zhang, L. and Lou, J. (2012) Mechanical Fault Diagnostics of Onload Tap Changer within Power Transformers Based on Hidden Markov Model. IEEETransactionsonPowerDelivery, 27, 596-601. https://doi.org/10.1109/tpwrd.2011.2175454
[46]
Sun, M., Bai, X., Zhang, W. and Ye, L. (2023) Jointed Task of Multi-Scale CNN Based Power Transformer Fault Diagnosis with Vibration and Sound Signals. 2023 PandaForumonPowerandEnergy (PandaFPE), Chengdu, 27-30 April 2023, 1761-1765. https://doi.org/10.1109/pandafpe57779.2023.10140472
[47]
Xu, W., Ding, D. and Zhang, C. (2025) Detection Method for Loose Points in Transformer Iron Cores Based on MTF and CNN. In: Sha, A., Zhang, L., Peng, J., Yan, X., Rong, C. and Jin, Z., Eds., The Proceedings of 2024 International Conference of Electrical, Electronic and Networked Energy Systems. EENES 2024, Springer, 187-194. https://doi.org/10.1007/978-981-96-1856-9_19
[48]
Yang, T. and Fan, T. (2023) Intelligent Sound Diagnosis Method for Extra High Voltage Converter Transformer Based on Gated Cyclic Unit. 2023 7thInternationalConferenceonPowerandEnergyEngineering (ICPEE), Chengdu, 22-24 December 2023, 34-41. https://doi.org/10.1109/icpee60001.2023.10453744
[49]
Ilampoornan, M., Vikash, M. and Newton, F. (2012) Transformer Fault Detection by Frequency Response Analysis. IOSRJournalofElectricalandElectronicsEngineering, 1, 27-32. https://doi.org/10.9790/1676-0142732
[50]
Gonzales Arispe, J.C. and Mombello, E.E. (2014) Detection of Failures within Transformers by FRA Using Multiresolution Decomposition. IEEETransactionsonPowerDelivery, 29, 1127-1137. https://doi.org/10.1109/tpwrd.2014.2306674
[51]
Al-Ameri, S.M.A.N., Kamarudin, M.S., Yousof, M.F.M., Salem, A.A., Banakhr, F.A., Mosaad, M.I., etal. (2021) Understanding the Influence of Power Transformer Faults on the Frequency Response Signature Using Simulation Analysis and Statistical Indicators. IEEE Access, 9, 70935-70947. https://doi.org/10.1109/access.2021.3076984
[52]
Cheng, Y., Bi, J., Chang, W., Xu, Y., Pan, X., Ma, X., etal. (2020) Proposed Methodology for Online Frequency Response Analysis Based on Magnetic Coupling to Detect Winding Deformations in Transformers. HighVoltage, 5, 343-349. https://doi.org/10.1049/hve.2019.0134
[53]
Mahfouz, S., Ei-Nemr, M.K. and Abu-Siada, A. (2022) Review: Frequency Response Analysis for Transformer’s Status Diagnoses. 2022 23rdInternationalMiddleEastPowerSystemsConference (MEPCON), Cairo, 13-15 December 2022, 1-7. https://doi.org/10.1109/mepcon55441.2022.10021754
[54]
Abu-Siada, A. and Islam, S. (2012) A Novel Online Technique to Detect Power Transformer Winding Faults. IEEETransactionsonPowerDelivery, 27, 849-857. https://doi.org/10.1109/tpwrd.2011.2180932
[55]
Dick, E.P. and Erven, C.C. (1978) Transformer Diagnostic Testing by Frequuency Response Analysis. IEEETransactionsonPowerApparatusandSystems, 97, 2144-2153. https://doi.org/10.1109/tpas.1978.354718
[56]
Dominguez, A., Platero, C.A., Mahtani, K. and Guerrero, J.M. (2024) Temperature Influence in Frequency Response Analysis for Transformer Oil Condition Monitoring. 2024 IEEEInternationalConferenceonEnvironmentandElectricalEngineeringand 2024 IEEEIndustrialandCommercialPowerSystemsEurope (EEEIC/I&CPSEurope), Rome, 17-20 June 2024, 1-6. https://doi.org/10.1109/eeeic/icpseurope61470.2024.10751092
[57]
Yang, Y. (2023) Pattern Recognition and Modelling for Transformer FRA Data Management. Ph.D. Thesis, The University of Manchester (United Kingdom).
[58]
Miyazaki, S. (2021) Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data. Energies, 15, Article 200. https://doi.org/10.3390/en15010200
[59]
Senobari, R.K., Javad, S. and Hossein, B. (2018) Frequency Response Analysis (FRA) of Transformers as a Tool for Fault Detection and Location: A Review. Electric Power Systems Research, 155, 172-183.
[60]
Liu, Y., Yang, F., Liang, X., Ji, S., Sun, X., Zhu, S., etal. (2014) Study on Sweep Frequency Impedance Method for Detecting Internal Winding Short Circuit Fault in Power Transformer. 2014 IEEEInternationalPowerModulatorandHighVoltageConference (IPMHVC), Santa Fe, 1-5 June 2014, 137-140. https://doi.org/10.1109/ipmhvc.2014.7287227
[61]
Liu, Y., Li, C., Guo, Z., Ren, F., Liu, F., Fu, Y., etal. (2023) Broadband Modelling of Power Transformers for Sweep Frequency Impedance Studies on Winding Short-Circuit Faults. Electronics, 12, Article 4068. https://doi.org/10.3390/electronics12194068
[62]
Beheshti Asl, M., Fofana, I., Meghnefi, F., Brahami, Y. and Souza, J.P.D.C. (2025) A Comprehensive Review of Transformer Winding Diagnostics: Integrating Frequency Response Analysis with Machine Learning Approaches. Energies, 18, Article 1209. https://doi.org/10.3390/en18051209
[63]
Baroumand, S., Abbasi, A.R. and Mahmoudi, M. (2025) Integrative Fault Diagnostic Analytics in Transformer Windings: Leveraging Logistic Regression, Discrete Wavelet Transform, and Neural Networks. Heliyon, 11, e42872. https://doi.org/10.1016/j.heliyon.2025.e42872
[64]
Areu, O.H., Menendez, A.M.G., Sanchez, J.I.H. and Valdes, E.S. (2018) Diagnosis of Faults in Power Transformers through the Interpretation of FRA Testing with Artificial Intelligence. 2018 IEEEInternationalAutumnMeetingonPower, ElectronicsandComputing (ROPEC), Ixtapa, 4-16 November 2018, 1-5. https://doi.org/10.1109/ropec.2018.8661467
[65]
Muthukuda, D., Ranasinghe, P., Morapitiya, P., Fernando, M., Wijayakulasooriya, J. and Bandara, K. (2023) AI Approach for FRA Based Condition Assessment of Power Transformers. 2023 IEEE 17thInternationalConferenceonIndustrialandInformationSystems (ICIIS), Peradeniya, 25-26 August 2023, 477-482. https://doi.org/10.1109/iciis58898.2023.10253506
[66]
Ezziane, H., Houassine, H., Moulahoum, S. and Amara, A. (2023) Evaluating the Severity of Transformer Winding Faults Using FRA and Artificial Intelligence. RussianElectricalEngineering, 94, 138-142. https://doi.org/10.3103/s1068371223020050
[67]
Chen, Y., Zhao, Z., Liu, J., Tan, S. and Liu, C. (2024) Application of Generative Ai-Based Data Augmentation Technique in Transformer Winding Deformation Fault Diagnosis. EngineeringFailureAnalysis, 159, Article ID: 108115. https://doi.org/10.1016/j.engfailanal.2024.108115
[68]
Cao, H., Zhou, C., Meng, Y., Shen, J. and Xie, X. (2024) Advancement in Transformer Fault Diagnosis Technology. FrontiersinEnergyResearch, 12, Article 1437614. https://doi.org/10.3389/fenrg.2024.1437614
[69]
Baral, A. and Chakravorti, S. (2014) Prediction of Moisture Present in Cellulosic Part of Power Transformer Insulation Using Transfer Function of Modified Debye Model. IEEETransactionsonDielectricsandElectricalInsulation, 21, 1368-1375. https://doi.org/10.1109/tdei.2014.6832285
[70]
Mishra, D., Baral, A., Haque, N. and Chakravorti, S. (2020) Condition Assessment of Power Transformer Insulation Using Short-Duration Time-Domain Dielectric Spectroscopy Measurement Data. IEEETransactionsonInstrumentationandMeasurement, 69, 4404-4411. https://doi.org/10.1109/tim.2019.2947120
[71]
Vatsa, A., Hati, A.S., Kumar, P., Margala, M. and Chakrabarti, P. (2024) Residual LSTM-Based Short Duration Forecasting of Polarization Current for Effective Assessment of Transformers Insulation. ScientificReports, 14, Article No. 1369. https://doi.org/10.1038/s41598-023-50641-z
[72]
Flora, S.D., Divekar, M.S. and Rajan, J.S. (2017) Factors Affecting Polarization and Depolarization Current Measurements on Insulation of Transformers. IEEETransactionsonDielectricsandElectricalInsulation, 24, 619-629. https://doi.org/10.1109/tdei.2016.005944
[73]
Gafvert, U., Adeen, L., Tapper, M., Ghasemi, P. and Jonsson, B. (2000) Dielectric Spectroscopy in Time and Frequency Domain Applied to Diagnostics of Power Transformers. Proceedings of the 6th International Conference on Properties and ApplicationsofDielectricMaterials (Cat.No. 00CH36347), Xi’an, 21-26 June 2000, 825-830.
[74]
Liu, J., Zheng, H., Zhang, Y., Wei, H. and Liao, R. (2017) Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement. Energies, 10, Article 1526. https://doi.org/10.3390/en10101526
[75]
Mousavi, S.A. (2023) Correction of Temperature Effects in Dielectric Response Tests in Power Transformers Using Artificial Intelligence. https://www.researchsquare.com/article/rs-3573158/v1
[76]
Vatsa, A., Hati, A.S. and Rathore, A.K. (2024) Enhancing Transformer Health Monitoring with Ai-Driven Prognostic Diagnosis Trends: Overcoming Traditional Methodology’s Computational Limitations. IEEEIndustrialElectronicsMagazine, 18, 30-44. https://doi.org/10.1109/mie.2023.3329277
[77]
Utami, N.Y., Tamsir, Y., Pharmatrisanti, A., Gumilang, H., Cahyono, B. and Siregar, R. (2009) Evaluation Condition of Transformer Based on Infrared Thermography Results. 2009 IEEE 9thInternationalConferenceonthePropertiesandApplicationsofDielectricMaterials, Harbin, 19-23 July 2009, 1055-1058. https://doi.org/10.1109/icpadm.2009.5252449
[78]
Xia, C., Ren, M., Wang, B., Dong, M., Xu, G., Xie, J., etal. (2020) Infrared Thermography-Based Diagnostics on Power Equipment: State-of-the-Art. HighVoltage, 6, 387-407. https://doi.org/10.1049/hve2.12023
[79]
Soni, R. and Mehta, B. (2021) Review on Asset Management of Power Transformer by Diagnosing Incipient Faults and Faults Identification Using Various Testing Methodologies. EngineeringFailureAnalysis, 128, Article ID: 105634. https://doi.org/10.1016/j.engfailanal.2021.105634
[80]
Sathyanarayana, B.R., Heydt, G.T. and Dyer, M.L. (2009) Distribution Transformer Life Assessment with Ambient Temperature Rise Projections. ElectricPowerComponentsandSystems, 37, 1005-1013. https://doi.org/10.1080/15325000902918875
[81]
Ullah, I., Khan, R.U., Yang, F. and Wuttisittikulkij, L. (2020) Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment. Energies, 13, Article 392. https://doi.org/10.3390/en13020392
[82]
Wang, M., Vandermaar, A.J. and Srivastava, K.D. (2002) Review of Condition Assessment of Power Transformers in Service. IEEEElectricalInsulationMagazine, 18, 12-25. https://doi.org/10.1109/mei.2002.1161455
[83]
Sun, Y., Hua, Y., Wang, E., Li, N., Ma, S., Zhang, L., etal. (2020) A Temperature-Based Fault Pre-Warning Method for the Dry-Type Transformer in the Offshore Oil Platform. InternationalJournalofElectricalPower&EnergySystems, 123, Article ID: 106218. https://doi.org/10.1016/j.ijepes.2020.106218
[84]
Santamaria-Bonfil, G., Arroyo-Figueroa, G., Zuniga-Garcia, M.A., Azcarraga Ramos, C.G. and Bassam, A. (2023) Power Transformer Fault Detection: A Comparison of Standard Machine Learning and Automl Approaches. Energies, 17, Article 77. https://doi.org/10.3390/en17010077
[85]
Brncic, I., Gajic, Z. and Einarsson, T. (2006) Transformer Differential Protection Improved by Implementation of Negative-Sequence Currents. ABB Power Technologies.
[86]
Ngọc, A.N. (2010) Dielectric Response Diagnoses for Transformer Windings. Cigre.
[87]
Oliveira, L.M.R. and Cardoso, A.J.M. (2017) Comparing Power Transformer Turn-To-Turn Faults Protection Methods: Negative Sequence Component versus Space-Vector Algorithms. IEEETransactionsonIndustryApplications, 53, 2817-2825. https://doi.org/10.1109/tia.2016.2613506
[88]
Megherbi, F.B., Mekious, M. and Megherbi, M. (2013) A Recovery Voltage as Non-Destructive Tool for Moisture Appreciation of Oil Impregnated Pressboard: An Approach for Power Transformers Testing. InternationalJournalonElectricalEngineeringandInformatics, 5, 422-432. https://doi.org/10.15676/ijeei.2013.5.4.3
[89]
N’cho, J., Fofana, I., Hadjadj, Y. and Beroual, A. (2016) Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies, 9, Article 367. https://doi.org/10.3390/en9050367
[90]
Fofana, I. and Hadjadj, Y. (2016) Electrical-based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies, 9, Article 679. https://doi.org/10.3390/en9090679
[91]
Saha, T.K. and Purkait, P. (2004) Investigation of an Expert System for the Condition Assessment of Transformer Insulation Based on Dielectric Response Measurements. IEEETransactionsonPowerDelivery, 19, 1127-1134. https://doi.org/10.1109/tpwrd.2004.829100
[92]
Talib, M.A., etal. (2003) Diagnosis of Transformer Insulation Condition Using Recovery Voltage Measurements. Proceedings.NationalPowerEngineeringConference, 2003. PECon 2003, Bangi, 15-16 December 2003, 329-332.
[93]
Gubanski, S.M., etal. (2003) Dielectric Response Methods for Diagnostics of Power Transformers. IEEEElectricalInsulationMagazine, 19, 12-18. https://doi.org/10.1109/MEI.2003.1203017
[94]
Niu, L., Zhao, J. and Li, K. (2012) Application of Data Mining Technology Based on RVM for Power Transformer Fault Diagnosis. In: Jin, D. and Lin, S., Eds., Advances in Computer Science and Information Engineering, Springer, 121-127. https://doi.org/10.1007/978-3-642-30223-7_20
[95]
Martínez, M. and Pleite, J. (2020) Improvement of RVM Test Interpretation Using a Debye Equivalent Circuit. Energies, 13, Article 323. https://doi.org/10.3390/en13020323
[96]
Marsala, G. and Lodato, C. (2024) Parameters Estimation of an Extended Debye Model for Power Transformer Insulation Using Voltage Recovery Method (RVM) and Genetic Algorithm (GA). IECON 2024—50thAnnualConferenceoftheIEEEIndustrialElectronicsSociety, Chicago, 3-6 November 2024, 1-7. https://doi.org/10.1109/iecon55916.2024.10905845
[97]
Kiran, A., Dutta, S. and Baral, A. (2022) Identification of Power Transformer Insulation Condition Sensitive Parameters Using Initial Slope of RVM. 2022 2ndInternationalConferenceonEmergingFrontiersinElectricalandElectronicTechnologies (ICEFEET), Patna, 24-25 June 2022, 1-5. https://doi.org/10.1109/icefeet51821.2022.9847819
[98]
Nirgude, P.M., Ashokraju, D., Rajkumar, A.D. and Singh, B.P. (2008) Application of Numerical Evaluation Techniques for Interpreting Frequency Response Measurements in Power Transformers. IETScience, Measurement&Technology, 2, 275-285. https://doi.org/10.1049/iet-smt:20070072
[99]
Malik, H., Azeem, A. and Jarial, R.K. (2012) Application Research Based on Modern-Technology for Transformer Health Index Estimation. InternationalMulti-ConferenceonSystems, Sygnals&Devices, Chemnitz, 20-23 March 2012, 1-7. https://doi.org/10.1109/ssd.2012.6198012
[100]
Huo, C. and Yang, Y. (2024) A Review of Research Progress on Residual Magnetism Detection Methods for Power Transformer Cores. IEEESensorsJournal, 24, 7636-7645. https://doi.org/10.1109/jsen.2024.3349604
[101]
Etumi, A.A.A. and Anayi, F.J. (2016) The Application of Correlation Technique in Detecting Internal and External Faults in Three-Phase Transformer and Saturation of Current Transformer. IEEETransactionsonPowerDelivery, 31, 2131-2139. https://doi.org/10.1109/tpwrd.2016.2572608
[102]
Wiszniewski, A., Rebizant, W. and Schiel, L. (2009) New Algorithms for Power Transformer Inter-Turn Fault Protection. ElectricPowerSystemsResearch, 79, 1454-1461. https://doi.org/10.1016/j.epsr.2009.04.021
[103]
Asadi, N. and Kelk, H.M. (2015) Modeling, Analysis, and Detection of Internal Winding Faults in Power Transformers. IEEETransactionsonPowerDelivery, 30, 2419-2426. https://doi.org/10.1109/tpwrd.2015.2431972
[104]
Masoum, A.S., Hashemnia, N., Abu-Siada, A., Masoum, M.A.S. and Islam, S.M. (2017) Online Transformer Internal Fault Detection Based on Instantaneous Voltage and Current Measurements Considering Impact of Harmonics. IEEETransactionsonPowerDelivery, 32, 587-598. https://doi.org/10.1109/tpwrd.2014.2358072
[105]
Faria, G., Pereira, M., Lopes, G., Villibor, J., Tavares, P. and Faria, I. (2018) Evaluation of Capacitance and Dielectric Dissipation Factor of Distribution Transformers—Experimental Results. 2018 IEEEElectricalInsulationConference (EIC), San Antonio, 17-20 June 2018, 336-339. https://doi.org/10.1109/eic.2018.8481052
[106]
Ashkezari, A.D., Ma, H., Saha, T.K. and Ekanayake, C. (2013) Application of Fuzzy Support Vector Machine for Determining the Health Index of the Insulation System of In-Service Power Transformers. IEEETransactionsonDielectricsandElectricalInsulation, 20, 965-973. https://doi.org/10.1109/tdei.2013.6518966
[107]
Malpure, B.D. and Baburao, K. (2008) Failure Analysis & Diagnostics of Power Transformer Using Dielectric Dissipation Factor. 2008 InternationalConferenceonConditionMonitoringandDiagnosis, Beijing, 21-24 April 2008, 497-501. https://doi.org/10.1109/cmd.2008.4580334
[108]
Syafruddin, H., Sinulingga, E.P., Nugroho, H.P. and Nasution, A. (2021) Diagnosis of Transformer Isolation Using Dielectric Dissipation Factor (Tan Delta) and Insulation Resistance: A Review Study. 2021 5thInternationalConferenceonElectrical, TelecommunicationandComputerEngineering (ELTICOM), Medan, 15-16 September 2021, 1-4
[109]
Werelius, P., Ohlen, M., Jialu Cheng, and Robalino, D.M. (2012) Dielectric Frequency Response Measurements and Dissipation Factor Temperature Dependence. 2012 IEEEInternationalSymposiumonElectricalInsulation, San Juan, 10-13 June 2012, 296-300. https://doi.org/10.1109/elinsl.2012.6251476
[110]
Sur, U. (2022) A Modified Dielectric Dissipation Factor Measurement Technique for Transformer Insulating Oil. MeasurementScienceandTechnology, 33, Article ID: 095011. https://doi.org/10.1088/1361-6501/ac7634
[111]
Abu-Elanien, A.E.B. and Salama, M.M.A. (2010) Asset management techniques for transformers. ElectricPowerSystemsResearch, 80, 456-464. https://doi.org/10.1016/j.epsr.2009.10.008
[112]
Rubhini, B. and Ranjan, P.V. (2017) Machine Condition Monitoring Using Audio Signature Analysis. 2017 Fourth International Conference on Signal Processing, CommunicationandNetworking (ICSCN), Chennai, 16-18 March 2017, 1-6. https://doi.org/10.1109/icscn.2017.8085717
[113]
Markalous, S., Tenbohlen, S. and Feser, K. (2008) Detection and Location of Partial Discharges in Power Transformers Using Acoustic and Electromagnetic Signals. IEEETransactionsonDielectricsandElectricalInsulation, 15, 1576-1583. https://doi.org/10.1109/tdei.2008.4712660
[114]
Akbari, A., Werle, P., Borsi, H. and Gockenbach, E. (2002) Transfer Function-Based Partial Discharge Localization in Power Transformers: A Feasibility Study. IEEEElectricalInsulationMagazine, 18, 22-32. https://doi.org/10.1109/mei.2002.1044318
[115]
Janus, P. (2012) Acoustic Emission Properties of Partial Discharges in the Time-Domain and Their Applications. https://www.diva-portal.org/smash/record.jsf?dswid=-555&pid=diva2%3A556865
[116]
Ilkhechi, H.D. and Samimi, M.H. (2021) Applications of the Acoustic Method in Partial Discharge Measurement: A Review. IEEETransactionsonDielectricsandElectricalInsulation, 28, 42-51. https://doi.org/10.1109/tdei.2020.008985
[117]
Besharatifard, H., Hasanzadeh, S., Heydarian-Forushani, E., Alhelou, H.H. and Siano, P. (2022) Detection and Analysis of Partial Discharges in Oil-Immersed Power Transformers Using Low-Cost Acoustic Sensors. AppliedSciences, 12, Article 3010. https://doi.org/10.3390/app12063010
[118]
Hussain, M.R., Refaat, S.S. and Abu-Rub, H. (2021) Overview and Partial Discharge Analysis of Power Transformers: A Literature Review. IEEEAccess, 9, 64587-64605. https://doi.org/10.1109/access.2021.3075288
[119]
Witos, F. and Olszewska, A. (2023) Investigation of Partial Discharges within Power Oil Transformers by Acoustic Emission. Energies, 16, Article 3779. https://doi.org/10.3390/en16093779
[120]
Su, J., Du, B., Li, J. and Li, Z. (2020) Electrical Tree Degradation in High‐voltage Cable Insulation: Progress and Challenges. HighVoltage, 5, 353-364. https://doi.org/10.1049/hve.2020.0009
[121]
Li, H., Cai, J., Chen, P., Zhang, J., Guo, W., Pan, Z., etal. (2024) Effect of Moisture on the Electric Field and Breakdown Voltage of XLPE Cable Interconnectors. AIPAdvances, 14, Article ID: 115221. https://doi.org/10.1063/5.0226274
[122]
Islam, M.F., Oo, A.M. and Azad, S.A. (2012) Locating Underground Cable Faults: A Review and Guideline for New Development. 2012 22ndAustralasianUniversitiesPowerEngineeringConference (AUPEC), Bali, 26-29 September 2012, 1-5.
[123]
Wang, W., Yan, X., Li, S., Zhang, L., Ouyang, J. and Ni, X. (2021) Failure of Submarine Cables Used in High-Voltage Power Transmission: Characteristics, Mechanisms, Key Issues and Prospects. IETGeneration, Transmission&Distribution, 15, 1387-1402. https://doi.org/10.1049/gtd2.12117
[124]
Gulski, E., Cichecki, P., Wester, F., Smit, J.J., Bodega, R., Hermans, T.J.W.H., etal. (2008) On-Site Testing and PD Diagnosis of High Voltage Power Cables. IEEETransactionsonDielectricsandElectricalInsulation, 15, 1691-1700. https://doi.org/10.1109/tdei.2008.4712673
[125]
Eigner, A. and Rethmeier, K. (2016) An Overview on the Current Status of Partial Discharge Measurements on AC High Voltage Cable Accessories. IEEEElectricalInsulationMagazine, 32, 48-55. https://doi.org/10.1109/mei.2016.7414231
[126]
Montanari, G.C. (2016) Partial Discharge Detection in Medium Voltage and High Voltage Cables: Maximum Distance for Detection, Length of Cable, and Some Answers. IEEEElectricalInsulationMagazine, 32, 41-46. https://doi.org/10.1109/mei.2016.7552375
[127]
Kumar, H., Kauhaniemi, K., Elmusrati, M. and Shafiq, M. (2023) Emerging Technologies Based Use Case Development for Condition Monitoring and Predictive Maintenance of MV Cables. 2023 IEEEPESInnovativeSmartGridTechnologiesLatinAmerica (ISGT-LA), San Juan, 6-9 November 2023, 180-184. https://doi.org/10.1109/isgt-la56058.2023.10328309
[128]
Zhou, Y., Wang, Y. and Wang, W. (2020) A Study on the Propagation Characteristics of Partial Discharge in Cable Joints Based on the FDTD Method. IEEEAccess, 8, 130094-130103. https://doi.org/10.1109/access.2020.3009569
[129]
Zhou, C., Michel, M., Hepburn, D.M. and Song, X. (2009) On-Line Partial Discharge Monitoring in Medium Voltage Underground Cables. IETScience, Measurement&Technology, 3, 354-363. https://doi.org/10.1049/iet-smt.2008.0100
[130]
Koltunowicz, W., Badicu, L., Broniecki, U. and Belkov, A. (2016) Increased Operation Reliability of HV Apparatus through PD Monitoring. IEEETransactionsonDielectricsandElectricalInsulation, 23, 1347-1354. https://doi.org/10.1109/tdei.2015.005579
[131]
Zhang, Z.S., Xiao, D.M. and Li, Y. (2009) Rogowski Air Coil Sensor Technique for On-Line Partial Discharge Measurement of Power Cables. IETScience, Measurement&Technology, 3, 187-196. https://doi.org/10.1049/iet-smt:20080025
[132]
Kumar, H., Shafiq, M., Kauhaniemi, K. and Elmusrati, M. (2024) Artificial Intelligence-Based Condition Monitoring and Predictive Maintenance of Medium Voltage Cables: An Integrated System Development Approach. 2024 10thInternationalConferenceonConditionMonitoringandDiagnosis (CMD), Gangneung, 20-24 October 2024, 191-195. https://doi.org/10.23919/cmd62064.2024.10766104
[133]
Liu, J., Zhang, G., Dong, J. and Wang, J. (2015) Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment. Sensors, 15, 29434-29451. https://doi.org/10.3390/s151129434
[134]
Shi, Q. and Kanoun, O. (2014) A New Algorithm for Wire Fault Location Using Time-Domain Reflectometry. IEEESensorsJournal, 14, 1171-1178. https://doi.org/10.1109/jsen.2013.2294193
[135]
Shi, Q., Troeltzsch, U. and Kanoun, O. (2010) Detection and Localization of Cable Faults by Time and Frequency Domain Measurements. 2010 7thInternationalMulti-ConferenceonSystems, SignalsandDevices, Amman, 27-30 June 2010, 1-6. https://doi.org/10.1109/ssd.2010.5585506
[136]
Schuet, S., Timucin, D. and Wheeler, K. (2011) A Model-Based Probabilistic Inversion Framework for Characterizing Wire Fault Detection Using TDR. IEEETransactionsonInstrumentationandMeasurement, 60, 1654-1663. https://doi.org/10.1109/tim.2011.2105030
[137]
Robles, G., Shafiq, M. and Martinez-Tarifa, J.M. (2019) Multiple Partial Discharge Source Localization in Power Cables through Power Spectral Separation and Time-Domain Reflectometry. IEEETransactionsonInstrumentationandMeasurement, 68, 4703-4711. https://doi.org/10.1109/tim.2019.2896553
[138]
Bohme, F., Pietsch, R., Kaltenborn, U. and Hensel, M. (2019) Cable Fault Location in High Voltage Cables—A New Solution. 2019 IEEEPESGTDGrandInternationalConferenceandExpositionAsia (GTDAsia), Bangkok, 19-23 March 2019, 406-410. https://doi.org/10.1109/gtdasia.2019.8715980
[139]
Zhang, J., Zhang, Y. and Guan, Y. (2016) Analysis of Time-Domain Reflectometry Combined with Wavelet Transform for Fault Detection in Aircraft Shielded Cables. IEEESensorsJournal, 16, 4579-4586. https://doi.org/10.1109/jsen.2016.2547323
[140]
Cozza, A. and Pichon, L. (2016) Echo Response of Faults in Transmission Lines: Models and Limitations to Fault Detection. IEEETransactionsonMicrowaveTheoryandTechniques, 64, 4155-4164. https://doi.org/10.1109/tmtt.2016.2608774
[141]
Lee, C. and Chang, S.J. (2021) A Method of Fault Localization within the Blind Spot Using the Hybridization between TDR and Wavelet Transform. IEEESensorsJournal, 21, 5102-5110. https://doi.org/10.1109/jsen.2020.3035754
[142]
Qinghai Shi, and Kanoun, O. (2015) Wire Fault Diagnosis in the Frequency Domain by Impedance Spectroscopy. IEEETransactionsonInstrumentationandMeasurement, 64, 2179-2187. https://doi.org/10.1109/tim.2014.2386918
[143]
Mu, H., Zhang, H., Zou, X., Zhang, D., Lu, X. and Zhang, G. (2022) Sensitivity Improvement in Cable Faults Location by Using Broadband Impedance Spectroscopy with Dolph-Chebyshev Window. IEEETransactionsonPowerDelivery, 37, 3846-3854. https://doi.org/10.1109/tpwrd.2021.3139426
[144]
Liu, C., Chen, D. and Hou, Y. (2024) Underground XLPE Coaxial Cable Length Calculation and Fault Detection Based on Broadband Impedance Spectroscopy. MeasurementScienceandTechnology, 36, Article ID: 016146. https://doi.org/10.1088/1361-6501/ad8f4d
[145]
Li, G., Chen, J., Li, H., Hu, L., Zhou, W., Zhou, C., etal. (2022) Diagnosis and Location of Power Cable Faults Based on Characteristic Frequencies of Impedance Spectroscopy. Energies, 15, Article 5617. https://doi.org/10.3390/en15155617
[146]
Amadi, H.N., Uwho, K.O., Kornom, D.M. and Biragbara, P. (2024) Fault Detection in High Voltage Cables Using Fourier Series for Improved Performance. JournalofRecentTrendsinElectricalPowerSystem, 8, 1-8.
[147]
Sun, Z. and Wu, Z. (2024) A Method for Locating Local Defects in Cables Based on Broadband Impedance Spectrum. In: Yang, Q. and Li, J., Eds., The Proceedings of the 11th Frontier Academic Forum of Electrical Engineering (FAFEE2024). FAFEE 2024, Springer, 207-215. https://doi.org/10.1007/978-981-97-8824-8_23
[148]
Das, A. and Reddy, C.C. (2023) An Analytical Approach to Locate Short Circuit Fault in a Cable Using Sweep Frequency Response Analysis. IEEETransactionsonIndustrialElectronics, 70, 5235-5244. https://doi.org/10.1109/tie.2022.3189080
[149]
Mo, S., Zhang, D., Li, Z. and Wan, Z. (2021) The Possibility of Fault Location in Cross-Bonded Cables by Broadband Impedance Spectroscopy. IEEETransactionsonDielectricsandElectricalInsulation, 28, 1416-1423. https://doi.org/10.1109/tdei.2021.009578
[150]
Liu, J., Ma, M., Liu, X. and Xu, H. (2024) High-Voltage Cable Buffer Layer Ablation Fault Identification Based on Artificial Intelligence and Frequency Domain Impedance Spectroscopy. Sensors, 24, Article 3067. https://doi.org/10.3390/s24103067
[151]
Wu, Y., Zhang, Q., Wei, Z. and Zhang, P. (2025) Data-Driven Incipient Ageing Location for Underground Power Distribution System Informed by Common-Mode Voltage Distribution. IEEETransactionsonIndustryApplications, 61, 1636-1647. https://doi.org/10.1109/tia.2024.3399695
[152]
Jiang, W., Wang, D., Hu, Y., Liu, B., Zhou, L., Qian, G., etal. (2024) Fault Diagnosis for Shielded Cables Based on MSST Algorithm and Impedance Polar Plots. IEEETransactionsonInstrumentationandMeasurement, 73, 1-12. https://doi.org/10.1109/tim.2024.3470991
[153]
Yaacob, M.M., Alsaedi, M.A., Rashed, J.R., Dakhil, A.M. and Atyah, S.F. (2014) Review on Partial Discharge Detection Techniques Related to High Voltage Power Equipment Using Different Sensors. PhotonicSensors, 4, 325-337. https://doi.org/10.1007/s13320-014-0146-7
[154]
Fu, H., Ai, Y., Qiu, L., Ai, Y., Yang, B. and Shi, Y. (2024) Application of Fuzzy Comprehensive Evaluation Method in the Identification of Potential Faults of High-Voltage Power Cables. FrontiersinEnergyResearch, 12, Article 1490524. https://doi.org/10.3389/fenrg.2024.1490524
[155]
Leung, T.W.A. (2007) Predictive Maintenance of Circuit Breakers. Master’s Thesis, University of Waterloo.
[156]
Asghar Razi-Kazemi, A. and Niayesh, K. (2021) Condition Monitoring of High Voltage Circuit Breakers: Past to Future. IEEETransactionsonPowerDelivery, 36, 740-750. https://doi.org/10.1109/tpwrd.2020.2991234
[157]
Wan, S. and Chen, L. (2019) Fault Diagnosis of High-Voltage Circuit Breakers Using Mechanism Action Time and Hybrid Classifier. IEEEAccess, 7, 85146-85157. https://doi.org/10.1109/access.2019.2926100
[158]
Dehghanian, P., Guan, Y. and Kezunovic, M. (2019) Real-Time Life-Cycle Assessment of High-Voltage Circuit Breakers for Maintenance Using Online Condition Monitoring Data. IEEETransactionsonIndustryApplications, 55, 1135-1146. https://doi.org/10.1109/tia.2018.2878746
[159]
Zhong, J., Li, W., Wang, C. and Yu, J. (2018) A RankBoost-Based Data-Driven Method to Determine Maintenance Priority of Circuit Breakers. IEEETransactionsonPowerDelivery, 33, 1044-1053. https://doi.org/10.1109/tpwrd.2017.2748146
[160]
Aizpurua, J.I., Catterson, V.M., Abdulhadi, I.F. and Garcia, M.S. (2018) A Model-Based Hybrid Approach for Circuit Breaker Prognostics Encompassing Dynamic Reliability and Uncertainty. IEEETransactionsonSystems, Man, andCybernetics: Systems, 48, 1637-1648. https://doi.org/10.1109/tsmc.2017.2685346
[161]
Žarković, M. and Stojković, Z. (2019) Artificial Intelligence SF6 Circuit Breaker Health Assessment. ElectricPowerSystemsResearch, 175, Article ID: 105912. https://doi.org/10.1016/j.epsr.2019.105912
[162]
Aziz, A., Yousaf, M.Z., Renhai, F., Khan, W., Siddique, U., Ahmad, M., etal. (2025) Advanced AI-Driven Techniques for Fault and Transient Analysis in High-Voltage Power Systems. ScientificReports, 15, Article No. 5592. https://doi.org/10.1038/s41598-025-90055-7
[163]
Qi, J., Gao, X. and Huang, N. (2020) Mechanical Fault Diagnosis of a High Voltage Circuit Breaker Based on High-Efficiency Time-Domain Feature Extraction with Entropy Features. Entropy, 22, Article 478. https://doi.org/10.3390/e22040478
[164]
Chen, L., Wan, S. and Dou, L. (2022) Improving Diagnostic Performance of High-Voltage Circuit Breakers on Imbalanced Data Using an Oversampling Method. IEEETransactionsonPowerDelivery, 37, 2704-2716. https://doi.org/10.1109/tpwrd.2021.3114547
[165]
Mahmoud, M.A., Md Nasir, N.R., Gurunathan, M., Raj, P. and Mostafa, S.A. (2021) The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review. Energies, 14, Article 5078. https://doi.org/10.3390/en14165078
[166]
Ballal, M.S., Jaiswal, G.C., Tutkane, D.R., Venikar, P.A., Mishra, M.K. and Suryawanshi, H.M. (2017) Online Condition Monitoring System for Substation and Service Transformers. IETElectricPowerApplications, 11, 1187-1195. https://doi.org/10.1049/iet-epa.2016.0842
[167]
Blažević, D., Keser, T., Glavaš, H. and Noskov, R. (2023) Power Transformer Condition-Based Evaluation and Maintenance (CBM) Using Dempster-Shafer Theory (DST). AppliedSciences, 13, Article 6731. https://doi.org/10.3390/app13116731
[168]
Ghazaly, N.M. (2024) AI-Enabled Predictive Maintenance for Distribution Trans-formers. ActaEnergetica, 2, 59-70.
[169]
Elele, U., Nekahi, A., Arshad, A. and Fofana, I. (2022) Towards Online Ageing Detection in Transformer Oil: A Review. Sensors, 22, Article 7923. https://doi.org/10.3390/s22207923
[170]
Vita, V., Fotis, G., Chobanov, V., Pavlatos, C. and Mladenov, V. (2023) Predictive Maintenance for Distribution System Operators in Increasing Transformers’ Reliability. Electronics, 12, Article 1356. https://doi.org/10.3390/electronics12061356
[171]
Zahra, S.T., Imdad, S.K., Khan, S., Khalid, S. and Baig, N.A. (2025) Power Transformer Health Index and Life Span Assessment: A Comprehensive Review of Conventional and Machine Learning Based Approaches. EngineeringApplicationsofArtificialIntelligence, 139, Article ID: 109474. https://doi.org/10.1016/j.engappai.2024.109474
[172]
Hu, H., Xu, K., Zhang, X., Li, F., Zhu, L., Xu, R., etal. (2025) Research on Predictive Maintenance Methods for Current Transformers with Iron Core Structures. Electronics, 14, Article 625. https://doi.org/10.3390/electronics14030625
[173]
Khalyasmaa, A.I., Matrenin, P.V., Eroshenko, S.A., Manusov, V.Z., Bramm, A.M. and Romanov, A.M. (2022) Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics. Mathematics, 10, Article 2486. https://doi.org/10.3390/math10142486
[174]
Syed, T.A., Khan, M.Y., Jan, S., Albouq, S., Alqahtany, S.S. and Naqash, M.T. (2024) Integrating Digital Twins and Artificial Intelligence Multi-Modal Transformers into Water Resource Management: Overview and Advanced Predictive Framework. AI, 5, 1977-2017. https://doi.org/10.3390/ai5040098
[175]
Badawi, M., Ibrahim, S.A., Mansour, D.A., El-Faraskoury, A.A., Ward, S.A., Mahmoud, K., etal. (2022) Reliable Estimation for Health Index of Transformer Oil Based on Novel Combined Predictive Maintenance Techniques. IEEEAccess, 10, 25954-25972. https://doi.org/10.1109/access.2022.3156102
[176]
Li, S., Li, X., Cui, Y. and Li, H. (2023) Review of Transformer Health Index from the Perspective of Survivability and Condition Assessment. Electronics, 12, Article 2407. https://doi.org/10.3390/electronics12112407
[177]
Joel, S. and Kaul, A. (2020) Predictive Maintenance Approach for Transformers Based on Hot Spot Detection in Thermal Images. 2020 FirstIEEEInternationalConferenceonMeasurement, Instrumentation, ControlandAutomation (ICMICA), Kurukshetra, 24-26 June 2020, 1-5. https://doi.org/10.1109/icmica48462.2020.9242851
[178]
Youssef, M.M., Ibrahim, R.A., Desouki, H. and Moustafa, M.M.Z. (2022) An Overview on Condition Monitoring & Health Assessment Techniques for Distribution Transformers. 2022 6thInternationalConferenceonGreenEnergyandApplications (ICGEA), Singapore, 4-6 March 2022, 187-192. https://doi.org/10.1109/icgea54406.2022.9791900
[179]
Gulski, E., Jongen, R., Parciak, J. and Sieminski, J. (2020) Modern Methods for Quality-and Condition Assessment of High Voltage Cables. VDEHighVoltageTechnology 2020; ETG-Symposium, 9-11 November 2020, 1-6.
[180]
Rafati, A., Mirshekali, H., Shaker, H.R. and Bayati, N. (2024) Power Grid Renovation: A Comprehensive Review of Technical Challenges and Innovations for Medium Voltage Cable Replacement. SmartCities, 7, 3727-3763. https://doi.org/10.3390/smartcities7060144
[181]
Meng, X., Jia, Y., Liu, Z., Yu, Z., Han, P., Lu, Z., etal. (2022) High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis. Energies, 15, Article 1369. https://doi.org/10.3390/en15041369
[182]
Lan, T., Mazhari, S.M., Teimourzadeh, H. and Chung, C.Y. (2023) An Online Data-Efficient HV Cable Fault Localization Approach via an Ai-Enabled Recognition of Modal Wavefront in Sheath Current. IEEETransactionsonPowerDelivery, 38, 1977-1989. https://doi.org/10.1109/tpwrd.2022.3230631
[183]
Kim, J., Jeong, M., Lee, H., Kim, Y. and Kang, H. (2024) Artificial Intelligence-Based Recognition and Classification of PRPD Patterns in Power Cable. 2024 10thInternationalConferenceonConditionMonitoringandDiagnosis (CMD), Gangneung, 20-24 October 2024, 612-615. https://doi.org/10.23919/cmd62064.2024.10766212
[184]
Ledmaoui, Y., El Maghraoui, A., El Aroussi, M. and Saadane, R. (2025) Review of Recent Advances in Predictive Maintenance and Cybersecurity for Solar Plants. Sensors, 25, Article 206. https://doi.org/10.3390/s25010206
[185]
Bustamante, S., Manana, M., Arroyo, A., Castro, P., Laso, A. and Martinez, R. (2019) Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors, 19, Article 4057. https://doi.org/10.3390/s19194057
[186]
Fuhr, J. (2011) Condition Based Maintenance for Power Transformers in Service: Application of Conventional and Advanced Diagnostic Methods. 2011 ElectricalInsulationConference (EIC), Annapolis, 5-8 June 2011, 271-275. https://doi.org/10.1109/eic.2011.5996160
[187]
Das, B.P. (2021) Investigating Return on Online DGA Investments for Service Aged Power Transformer. TransformersMagazine, 8, 86-96.
[188]
Hassan, I.U., Panduru, K. and Walsh, J. (2024) An In-Depth Study of Vibration Sensors for Condition Monitoring. Sensors, 24, Article 740. https://doi.org/10.3390/s24030740
[189]
Orban, H. (2002) Partial Discharge Testing of In-Situ Power Cable Accessories. Electric Energy T&D Magazine, 6.
[190]
Ciocoiu, L., Siemieniuch, C.E. and Hubbard, E. (2017) From Preventative to Predictive Maintenance: The Organisational Challenge. ProceedingsoftheInstitutionofMechanicalEngineers, PartF: JournalofRailandRapidTransit, 231, 1174-1185. https://doi.org/10.1177/0954409717701785
[191]
Shams, F., Omar, M., Usman, M., Khan, S., Larkin, S. and Raw, B. (2022) Thermal Imaging of Utility Power Lines: A Review. 2022 InternationalConferenceonEngineeringandEmergingTechnologies (ICEET), Kuala Lumpur, 27-28 October 2022, 1-4. https://doi.org/10.1109/iceet56468.2022.10007289
[192]
Zarco-Periñán, P.J., Martínez-Ramos, J.L. and Zarco-Soto, F.J. (2021) A Novel Method to Correct Temperature Problems Revealed by Infrared Thermography in Electrical Substations. InfraredPhysics&Technology, 113, Article ID: 103623. https://doi.org/10.1016/j.infrared.2020.103623
[193]
Farzaneh, M. (2009) Outdoor Insulators: Overview of In-Service Experience, Inspection Practice and Future Challenges. 2009 IEEEElectricalInsulationConference, Montreal, 31 May-3 June 2009, 542-550. https://doi.org/10.1109/eic.2009.5166405
[194]
Farzaneh, M. and Chisholm, W.A. (2009) Insulators for Icing and Polluted Environments. Wiley. https://doi.org/10.1002/9780470496251
[195]
Djekic, Z. (2009) Online Circuit Breaker Monitoring System. https://hdl.handle.net/1969.1/ETD-TAMU-2060
[196]
Shockey, T. (2016) Thermal Imaging for Identifying Electrical Issues. Fluke Corpo-ration.
[197]
Hou, D. (2009) High-Impedance Fault Detection-Field Tests and Dependability Analysis. Proceedingsofthe 36thAnnualWesternProtectiveRelayConference, Spokane, 20-22 October 2009, 1-10.
[198]
Akbar, S., Vaimann, T., Asad, B., Kallaste, A., Sardar, M.U. and Kudelina, K. (2023) State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions. Energies, 16, Article 6345. https://doi.org/10.3390/en16176345
[199]
Uydur, C.C. and Arikan, O. (2020) Use of Tanδ and Partial Discharge for Evaluating the Cable Termination Assembly. Energies, 13, Article 5299. https://doi.org/10.3390/en13205299
[200]
Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.D.P., Basto, J.P. and Alcalá, S.G.S. (2019) A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Computers&IndustrialEngineering, 137, Article ID: 106024. https://doi.org/10.1016/j.cie.2019.106024
[201]
Fanchiang, K. and Kuo, C. (2022) Application of Thermography and Adversarial Reconstruction Anomaly Detection in Power Cast-Resin Transformer. Sensors, 22, Article 1565. https://doi.org/10.3390/s22041565
[202]
Divya, D., Marath, B. and Santosh Kumar, M.B. (2022) Review of Fault Detection Techniques for Predictive Maintenance. JournalofQualityinMaintenanceEngineering, 29, 420-441. https://doi.org/10.1108/jqme-10-2020-0107
[203]
Ucar, A., Karakose, M. and Kırımça, N. (2024) Artificial Intelligence for Predictive Maintenance Applications: Key Components, Trustworthiness, and Future Trends. AppliedSciences, 14, Article 898. https://doi.org/10.3390/app14020898
[204]
Maresch, K., Freitas-Gutierres, L.F., Oliveira, A.L., Borin, A.S., Cardoso, G., Damiani, J.S., et al. (2023) Advanced Diagnostic Approach for High-Voltage Insulators: Analyzing Partial Discharges through Zero-Crossing Rate and Fundamental Frequency Estimation of Acoustic Raw Data. Energies, 16, Article 6033. https://doi.org/10.3390/en16166033
[205]
Hussain, G.A., Hassan, W., Mahmood, F., Shafiq, M., Rehman, H. and Kay, J.A. (2023) Review on Partial Discharge Diagnostic Techniques for High Voltage Equipment in Power Systems. IEEE Access, 11, 51382-51394. https://doi.org/10.1109/access.2023.3279355
[206]
Moutis, P. and Alizadeh-Mousavi, O. (2021) Digital Twin of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage from Low Voltage Measurements. IEEE Transactions on Power Delivery, 36, 1952-1963. https://doi.org/10.1109/tpwrd.2020.3017355
[207]
Khalyasmaa, A.I., Stepanova, A.I., Eroshenko, S.A. and Matrenin, P.V. (2023) Review of the Digital Twin Technology Applications for Electrical Equipment Lifecycle Management. Mathematics, 11, Article 1315. https://doi.org/10.3390/math11061315
[208]
Qiao, Y. (2025) Data Analysis and Prediction of High-Voltage Power Transmission Systems Based on Digital Twin. IETConferenceProceedings, 2024, 285-290. https://doi.org/10.1049/icp.2024.4387
[209]
Wu, T., Yang, F., Farooq, U., Li, X. and Jiang, J. (2024) An Online Learning Method for Constructing Self-Update Digital Twin Model of Power Transformer Temperature Prediction. Applied Thermal Engineering, 237, Article ID: 121728. https://doi.org/10.1016/j.applthermaleng.2023.121728
[210]
Yao, H., Zhang, X., Guo, Q., Miao, Y. and Guan, S. (2024) Fault Diagnosis Method for Oil-Immersed Transformers Integrated Digital Twin Model. ScientificReports, 14, Article No. 20355. https://doi.org/10.1038/s41598-024-71107-w
[211]
Jiang, L., etal. (2025) Research on Transformer Fault Diagnosis Method Based on Digital Twin. JournalofSystemSimulation, 37, 775-790.
[212]
Tang, Z. and Jian, X. (2024) Thermal Fault Diagnosis of Complex Electrical Equipment Based on Infrared Image Recognition. ScientificReports, 14, Article No. 5547. https://doi.org/10.1038/s41598-024-56142-x
[213]
Behkam, R., Naderi, M.S. and Gharehpetian, G.B. (2021) Detection of Transformer Defects in Smart Environment Using Frequency Response Analysis and Artificial Neural Network Based on Data-Driven Systems. 2021 11thSmartGridConference (SGC), Tabriz, 7-9 December 2021, 1-6. https://doi.org/10.1109/sgc54087.2021.9664092
[214]
Lei, T., Faifer, M., Ottoboni, R. and Toscani, S. (2017) On-Line Fault Detection Technique for Voltage Transformers. Measurement, 108, 193-200. https://doi.org/10.1016/j.measurement.2017.03.002
[215]
Sobhy, G.M., El-Rifaie, A.M. and Sharkawy, R.M. (2019) Fault Detection Technique for High Voltage Power Transformers. Proceedings of the World Congress on Engineering, London, 3-5 July 2019. https://www.researchgate.net/profile/Ali-El-Rifaie/publication/334289759_Fault_detection_Technique_for_High_Voltage_Power_Transformers/links/5d2c862d299bf1547cb82a7d/Fault-detection-Technique-for-High-Voltage-Power-Transformers.pdf