Cymbopogon citratus is widely recognized for its many virtues, particularly in the fields of nutrition and health. It is frequently used in infusions, decoctions and essential oils, as well as for its antioxidant properties. The main aim of this study was to determine the chemical composition of Cymbopogon citratus extracts, as well as their antioxidant potential, both in terms of aqueous extracts and essential oil. To do this, C. citratus leaves were dried at room temperature, then pulverized using a grinder. The powder obtained was used to prepare three types of aqueous extracts in the form of: macerate, infused and decocted in a ratio of 10 g powdered sample to 100 ml water with an extraction yield of: (12.2%); (11.63%) and (9.25%) respectively. Physicochemical analysis using photo-colorimetric techniques, including Folin-Ciocalteu and aluminum chloride methods, allowed to know the phytochemistry of the various C. citratus aqueous extracts prepared, with the marked presence of several bioactive compounds such: alkaloids, flavonoids, tannins, coumarins, saponosides, leucocyanines, sterols and triterpenes, carotenoids, fixed oils and fats and the absence of anthraquinones, anthocyanins, gums and mucilages and emodins. Total polyphenols, measured in gallic acid equivalents (mg EAG/100 of RP), showed a higher level of content in the infused (822.17) followed by the macerate (481.59). Flavonoids and tannins in milligrams of catechin equivalents (mg EC/100g of RP) are high in the infused and with: (283.04) and (235.83) respectively. However, tannins in mg EC/100g of RP in the macerate are high with (3.28) and (3.24) in the decoction. The DPPH (Diphenylpicrylhydrazyl), ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and TAC (Total Antioxidant Capacity) methods showed that the extract richest in polyphenols showed the highest antioxidant activity.
References
[1]
Machraoui, M., et al. (2018) Ethnobotanical and Phytopharmacological Notes on Cymbopogon citratus (DC.) Stapf. Journal of New Sciences, 55, Article 5. https://www.jnsciences.org
[2]
Dabire, T.G., Bonzi, S., Somda, I. and Legreve, A. (2016) Activité antifongique d’ex-traits aqueux de Cymbopogon citratus (DC) Stapf., Eclipta alba (L.) Hassk. et Portu-laca oleracea (L.) contre les principaux champignons transmis par les semences d’oignon (Allium cepa L.) au Burkina Faso [Antifungal Activity of Cymbopogon citratus (DC) Stapf., Eclipta alba (L.) Hassk. and Portulaca oleracea (L.) Aqueous Extracts against the Main Seed-Borne Fungi of Onion (Allium cepa L.) in Burkina Faso]. International Journal of Innovation and Applied Studies, 17, 804-812.
[3]
Bhatnagar, A. (2020) Composition chimique et activité antioxydante de l’huile essentielle de Cymbopogon flexuosus. Journal of Applied and Natural Science, 12, 25-29. https://doi.org/10.31018/jans.v12i1.2207
[4]
Sarr, S., Fall, A., Gueye, R., Diop, A., Diatta, K., Diop, N., et al. (2015) Etude de l’activité antioxydante des extraits des feuilles de Vitex doniana (Verbenacea). International Journal of Biological and Chemical Sciences, 9, 1263-1269. https://doi.org/10.4314/ijbcs.v9i3.11
[5]
Kiani, H.S., Ali, A., Zahra, S., Hassan, Z.U., Kubra, K.T., Azam, M., et al. (2022) Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota. AppliedChem, 2, 229-246. https://doi.org/10.3390/appliedchem2040016
[6]
Da Ressurreição, S., Pedreiro, S., Batista, M.T. and Figueirinha, A. (2022) Effet des composés phénoliques des feuilles de Cymbopogon citratus (DC) Stapf. sur la solubilité micellaire du cholestérol. Molecules, 27, Article 7338. https://doi.org/10.3390/molecules27217338
[7]
Shahidi, F. and Zhong, Y. (2015) Mesure de l’activité antioxydante. Journal of Functional Foods, 18, 757-781. https://doi.org/10.1016/j.jff.2015.01.047
[8]
Gulcin, İ. and Alwasel, S.H. (2023) DPPH Radical Scavenging Assay. Processes, 11, Article 2248. https://doi.org/10.3390/pr11082248
[9]
Munteanu, I.G. and Apetrei, C. (2021) Méthodes analytiques utilisées pour déterminer l’activité antioxydante: Une revue. International Journal of Molecular Sciences, 22, Article 3380. https://doi.org/10.3390/ijms22073380
[10]
Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A. and Terekhov, R.P. (2020) Essai de décoloration ABTS/PP des voies de réaction de la capacité antioxydante. International Journal of Molecular Sciences, 21, Article 1131. https://doi.org/10.3390/ijms21031131
[11]
Cano, A., Maestre, A.B., Hernández-Ruiz, J. and Arnao, M.B. (2023) ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes, 11, Article 185. https://doi.org/10.3390/pr11010185
[12]
Konaré, M.A., Condurache, N.N., Togola, I., Păcularu-Burada, B., Diarra, N., Stănciuc, N., et al. (2023) Valorization of Bioactive Compounds from Two Underutilized Wild Fruits by Microencapsulation in Order to Formulate Value-Added Food Products. Plants, 12, Article 267. https://doi.org/10.3390/plants12020267
[13]
Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., et al. (2019) Extraction des huiles essentielles de Rosmarinus officinalis L. par deux méthodes diffé-rentes: L’hydrodistillation et l’hydrodistillation assistée par micro-ondes. The Scientific World Journal, 2019, Article ID: 3659432. https://doi.org/10.1155/2019/3659432
[14]
Shaikh, J.R. and Patil, M. (2020) Qualitative Tests for Preliminary Phytochemical Screening: An Overview. International Journal of Chemical Studies, 8, 603-608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
[15]
Issiaka, T., Maïmounatou, N., Nah, T., Abdoulaye, K.M., Nouhoum, D., Issiaka, T., et al. (2023) Ethnobotanical and Comparative Study of the Antioxidant and Anti-Inflammatory Potential of Three Organs of Zanthoxylum Zanthoxyloides, a Plant Used in the Traditional Treatment of Sickle-Cell Disease in Bamako. GSC Biological and Pharmaceutical Sciences, 25, 019-030. https://doi.org/10.30574/gscbps.2023.25.1.0402
[16]
Konaré, M.A., Ibrahim, H.B., Sanogo, F., Cissé, C., Togola, I. and Diarra, N. (2024) Phytochimie et activité antioxydante des extraits de Sclerocarya birrea, une plante utilisée dans la prise en charge traditionnelle de l’hy-pertension au Mali. International Journal of Biosciences, 25, 75-82.
[17]
Koutouan, F.P., Yapi, Y.M., Wandan, E.N., Bodji, N.C. and N’da, K.P. (2019) Composition en polyphénols totaux et en tanins des feuilles de neuf variétés de Cajanus cajan (L.) Millsp. au cours du premier cycle de croissance et en fonction du mode d’exploitation. International Journal of Biological and Chemical Sciences, 13, 882-898. https://doi.org/10.4314/ijbcs.v13i2.25
[18]
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
[19]
da Silva Port’s, P., Chisté, R.C., Godoy, H.T. and Prado, M.A. (2013) Les composés phénoliques et le potentiel antioxydant de l’infusion d’herbes de la région amazonienne brésilienne. Food Research International, 53, 875-881. https://doi.org/10.1016/j.foodres.2013.02.010
[20]
Olszowy, M. (2019) Qu’est-ce qui est responsable des propriétés antioxydantes des composés polyphénoliques des plantes? Plant Physiology and Biochemistry, 144, 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039
[21]
Widodo, H., Sismindari, S., Asmara, W. and Rohman, A. (2019) Antioxidant Activity, Total Phenolic and Flavonoid Contents of Selected Medicinal Plants Used for Liver Diseases and Its Classification with Chemometrics. Journal of Applied Pharmaceutical Science, 9, 99-105. https://doi.org/10.7324/JAPS.2019.90614
[22]
Hu, W., Sarengaowa, Guan, Y. and Feng, K. (2022) Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Frontiers in Microbiology, 13, Article 906069. https://doi.org/10.3389/fmicb.2022.906069
[23]
Asif, M. (2015) Chemistry and Antioxidant activity of Plants Containing Some Phenolic Compound. Chemistry International, 1, 35-52.