全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geochemical Study of Laterite and Its Use as Reactive Permeable Barrier for Responsible Management of Mine Tailings at Sabodala Gold Operations

DOI: 10.4236/ijg.2025.167019, PP. 391-404

Keywords: Laterite, Tailings, Contamination, Reactive Permeable Barrier, Sabodala Gold Operations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Sabodala mine uses laterite in the tailings and water dams as the main material for the dikes of the hydraulic structures and as a sealing layer (physical barrier) to limit the seepage of discharge water and protect groundwater from contamination, arsenic in particular. For the permanent storage of arsenic in mining environments and the protection of environmental matrices (soil, water and air), it is processed in the form of scorodite (FeAsO4?2H2O) or arsenic-adsorbed ferrihydrite. Both minerals are ecologically stable under a wide range of physicochemical conditions. This study aims to investigate the geochemical behaviour of laterite and its use in a Reactive Permeable Barrier (RPB) for the responsible management of arsenic mine tailings in a sustainable development context. The methodology begins with a physico-chemical and mineralogical characterization of laterite and mine tailings. After characterization, two kinetic tests were carried out in a control Mini-Cell Alteration (MCA) and a laterite beneficiation test in a Reactive Permeable Barrier (RPB). Electrochemical parameters (pH, electrical conductivities), sulphates, calcium ions and metalloids (As and Sb) in the leachates were measured. The results of physico-chemical and mineralogical characterizations of laterite and mine tailings showed that: (i) laterites are composed of quartz (SiO2), kaolinite (Al2Si2O5(OH)4), hematite (Fe2O3), goethite (FeO(OH)) and anatase (TiO2); (ii) tailings contain high levels of arsenic and antimony; (iii) they also include calcite, ferrodolomite, quartz albite, muscovite and chlorite. Kinetic tests in MCA geochemical studies have shown that mine tailings are non-acid-generating, with low metalloid mobility (0.90% for arsenic and 0.86% for antimony). The study of laterite recovery in an RPB in MCA showed a high retention of metalloids (55.26% for arsenic and 57.14% for antimony) and sulphate and calcium ions by the laterite layer. This reactive property of laterite helps protect groundwater from pollutants leached from mine tailings and should enable the mine to develop an appropriate management approach as part of a sustainable development strategy.

References

[1]  Mend, R. (2004) Review of Water Quality Issues in Neutral pH Drainage: Priorities for the Mining Industry in Canada. Mend Report 10.113-14.
[2]  Bussière, B., Aubertin, M., Mbonimpa, M., Molson, J.W. and Chapuis, R.P. (2007) Field Experimental Cells to Evaluate the Hydrogeological Behaviour of Oxygen Barriers Made of Silty Materials. Canadian Geotechnical Journal, 44, 245-265.
https://doi.org/10.1139/t06-120
[3]  Bussière, B. (2010) Acid Mine Drainage from Abandoned Mine Sites: Problematic and Reclamation Approaches. In: Chen, Y., Zhan, L. and Tang, X., Eds., Advances in Environmental Geotechnics, Springer, 111-125.
https://doi.org/10.1007/978-3-642-04460-1_6
[4]  Stantec Consulting Ltd (2004) Rapport NEDEM 10.1—Review of Water Quality Is-sues in Neutral pH Drainage: Examples and Emerging Priorities for the Mining Industry in Canada. Natural Resources Canada.
[5]  Ayari, J., Barbieri, M., Agnan, Y., Sellami, A., Braham, A., Dhaha, F., et al. (2021) Trace Element Contamination in the Mine-Affected Stream Sediments of Oued Rarai in North-Western Tunisia: A River Basin Scale Assessment. Environmental Geochemistry and Health, 43, 4027-4042.
https://doi.org/10.1007/s10653-021-00887-1
[6]  Siahcheshm, K., Orberger, B. and Wagner, C. (2022) Bioavailability and Heavy Metals Speciation Assessment in the Contaminated Soils of Doustbaglu Mineralized Area, NW Iran. Environmental Earth Sciences, 81, Article No. 34.
https://doi.org/10.1007/s12665-021-10162-2
[7]  Flemming, R.L., Salzsauler, K.A., Sherriff, B.L. and Sidenko, N.V. (2005) Identification of Scorodite in Fine-Grained, High-Sulfide, Arsenopyrite Mine-Waste Using Micro X-Ray Diffraction (XRD). The Canadian Mineralogist, 43, 1243-1254.
https://doi.org/10.2113/gscanmin.43.4.1243
[8]  Drahota, P. and Filippi, M. (2009) Secondary Arsenic Minerals in the Environment: A Review. Environment International, 35, 1243-1255.
https://doi.org/10.1016/j.envint.2009.07.004
[9]  Walker, S.R., Parsons, M.B., Jamieson, H.E. and Lanzirotti, A. (2009) Arsenic Mineralogy of Near-Surface Tailings and Soils: Influences on Arsenic Mobility and Bioaccessibility in the Nova Scotia Gold Mining Districts. The Canadian Mineralogist, 47, 533-556.
https://doi.org/10.3749/canmin.47.3.533
[10]  Paktunc, D., Foster, A., Heald, S. and Laflamme, G. (2004) Speciation and Characterization of Arsenic in Gold Ores and Cyanidation Tailings Using X-Ray Absorption Spectroscopy. Geochimica et Cosmochimica Acta, 68, 969-983.
https://doi.org/10.1016/j.gca.2003.07.013
[11]  Krause, E. and Ettel, V.A. (1988) Solubility and Stability of Scorodite, New Data and Further Discussion. American Mineralogist, 73, 850-854.
[12]  Chen, N., Jiang, D.T., Cutler, J., Kotzer, T., Jia, Y.F., Demopoulos, G.P., et al. (2009) Structural Characterization of Poorly-Crystalline Scorodite, Iron(III)—Arsenate Co-Precipitates and Uranium Mill Neutralized Raffinate Solids Using X-Ray Absorption Fine Structure Spectroscopy. Geochimica et Cosmochimica Acta, 73, 3260-3276.
https://doi.org/10.1016/j.gca.2009.02.019
[13]  Langmuir, D., Mahoney, J. and Rowson, J. (2006) Solubility Products of Amorphous Ferric Arsenate and Crystalline Scorodite (FeAsO4∙2H2O) and Their Application to Arsenic Behavior in Buried Mine Tailings. Geochimica et Cosmochimica Acta, 70, 2942-2956.
https://doi.org/10.1016/j.gca.2006.03.006
[14]  Rong, Z., Tang, X., Wu, L., Chen, X., Dang, W. and Wang, Y. (2020) A Novel Method to Synthesize Scorodite Using Ferrihydrite and Its Role in Removal and Immobilization of Arsenic. Journal of Materials Research and Technology, 9, 5848-5857.
https://doi.org/10.1016/j.jmrt.2020.03.112
[15]  Harris, G.B. and Krause, E. (1993) The Disposal of Arsenic from Metallurgical Processes: Its Status Regarding Ferric Arsenate. In: Reddy, R.G. and Weizenbach, R.N., Eds., Extractive Metallurgy of Copper, Nickel and Cobalt, Vol. I (Fundamental Aspects), The Minerals, Metals and Materials Society, 1221-1237.
[16]  Harris, G.B. (2000) The Removal and Stabilization of Arsenic from Aqueous Process Solutions: Past, Present and Future. 2000 SME Annual Meeting & Exhibit, Salt Lake City, 28 February-1 March 2000, 3-20.
[17]  Bassolé, M.R. (2016) Pertinence des essais de lixiviation en batch dans la prédiction du comportement hydrogéochimique des rejets miniers. Ph.D. Thesis, École Polytechnique de Montréal.
[18]  Pérez-López, R., Nieto, J.M. and de Almodóvar, G.R. (2007) Utilization of Fly Ash to Improve the Quality of the Acid Mine Drainage Generated by Oxidation of a Sulphide-Rich Mining Waste: Column Experiments. Chemosphere, 67, 1637-1646.
https://doi.org/10.1016/j.chemosphere.2006.10.009
[19]  Chopard, A., Benzaazoua, M., Plante, B., Bouzahzah, H. and Marion, P. (2015) Kinetic Tests to Evaluate the Relative Oxidation Rates of Various Sulfides and Sulfosalts. Proceedings of the 10th ICARD and IMWA Annual Conference, Santiago, 21-24 April 2015, 10.
[20]  Hakkou, R., Benzaazoua, M. and Bussière, B. (2008) Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 2. Mine Waste Geochemical Behavior. Mine Water and the Environment, 27, 160-170.
https://doi.org/10.1007/s10230-008-0035-7
[21]  Edahbi, M., Benzaazoua, M., Plante, B., Doire, S. and Kormos, L. (2018) Mineralogical Characterization Using QEMSCAN® and Leaching Potential Study of REE within Silicate Ores: A Case Study of the Matamec Project, Québec, Canada. Journal of Geochemical Exploration, 185, 64-73.
https://doi.org/10.1016/j.gexplo.2017.11.007
[22]  Diop, M., Diouf, Y., Diouf, B. and Diop, T. (2025) Determination, Speciation and Bioavailability of Trace Metals Elements in Sabodala Mine Tailings. Journal of Environmental Protection, 16, 225-238.
https://doi.org/10.4236/jep.2025.163011
[23]  Govindaraju, K. (1994) 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards and Geoanalytical Research, 18, 1-158.
https://doi.org/10.1111/j.1751-908x.1994.tb00526.x
[24]  Cruz, R., Méndez, B.A., Monroy, M. and González, I. (2001) Cyclic Voltammetry Applied to Evaluate Reactivity in Sulfide Mining Residues. Applied Geochemistry, 16, 1631-1640.
https://doi.org/10.1016/s0883-2927(01)00035-x
[25]  Villeneuve, M. (2004) Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d’acide à l’aide d’essais cinétiques. Ph.D. Thesis, École Polytechnique de Montréal.
[26]  Bussière, B., Aubertin, M., Zagury, G.J., Potvin, R. and Benzaazoua, M. (2005) Principaux défis et pistes de solution pour la restauration des sites miniers abandonnés générateurs de drainage minier acide. 2e symposium sur lenvironnement et les mines, Rouyn-Noranda, 15 May 2005, 29.
[27]  Ouedraogo, R.D., Bakouan, C., Sorgho, B., Guel, B. and Bonou, L.D. (2020) Caractérisation d’une latérite naturelle du Burkina Faso en vue de l’élimination de l’arsenic (III) et l’arsenic (V) dans les eaux souterraines. International Journal of Biological and Chemical Sciences, 13, 2959-2977.
https://doi.org/10.4314/ijbcs.v13i6.41
[28]  Sanou, Y., Tiendrebeogo, R. and Pare, S. (2020) Développement d’un pilote de traitement des eaux de forage contaminées par l’arsenic pour une application en zones rurales au Burkina Faso. Journal de la Societe Ouest-Africaine de Chimie, 49, 22-30.
[29]  Diop, B.O., Gbaguidi, I., Lo, P.G., Sène, S., Cisse, A., Ba, M., et al. (2025) Compositional Suitability Assessment and New Classification of Lateritic Soils for Road Construction: Case of Materials from the Thies Region in Senegal. Journal of Geoscience and Environment Protection, 13, 71-88.
https://doi.org/10.4236/gep.2025.131005
[30]  Sapsford, D.J., Bowell, R.J., Dey, M., Williams, M.C. and Williams, K.P. (2008) A Comparison of Kinetic NAG Tests with Static and Humidity Cell Tests for the Pre-diction of ARD. Proceedings of the 10th International Mine Water Association Con-gress, Karlovy Vary, Czech Republic.
[31]  Hedin, R.S., Watzlaf, G.R. and Nairn, R.W. (1994) Passive Treatment of Acid Mine Drainage with Limestone. Journal of Environmental Quality, 23, 1338-1345.
https://doi.org/10.2134/jeq1994.00472425002300060030x
[32]  Mayer, K.U., Frind, E.O. and Blowes, D.W. (2002) Multicomponent Reactive Transport Modeling in Variably Saturated Porous Media Using a Generalized Formulation for Kinetically Controlled Reactions. Water Resources Research, 38, 13-1-13-21.
https://doi.org/10.1029/2001wr000862
[33]  He, M. (2007) Distribution and Phytoavailability of Antimony at an Antimony Mining and Smelting Area, Hunan, China. Environmental Geochemistry and Health, 29, 209-219.
https://doi.org/10.1007/s10653-006-9066-9
[34]  Denys, S., Tack, K., Caboche, J. and Delalain, P. (2009) Bioaccessibility, Solid Phase Distribution, and Speciation of SB in Soils and in Digestive Fluids. Chemosphere, 74, 711-716.
https://doi.org/10.1016/j.chemosphere.2008.09.088

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133