全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Manihot esculenta Leaf Extracts Disrupt Spermatogenesis in Wistar Rats

DOI: 10.4236/jbm.2025.137008, PP. 105-120

Keywords: Anti-Spermatogenic Effects, Epidydimal Sperm, Manihot esculenta, Testosterone, Wistar Rats, Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Manihot esculenta (M. esculenta) is widely used in traditional medicine and is known for its pharmacological properties. This study evaluated the effects of ethanolic leaf extracts of M. esculenta on biochemical markers of fertility, testicular histology, and epididymal sperm count in male Wistar rats. Ethanolic extraction and phytochemical screening were performed on powdered M. esculenta leaves using standard methods. Two groups of twenty adult male Wistar rats were included in the study. The control group received distilled water, while the treated group received ethanolic leaf extract of M. esculenta (200 mg/kg body weight) for 6 and 12 weeks. Body and testicular weights were recorded, and blood samples were collected to measure biochemical fertility markers. Testis and epididymis histology were analyzed, and sperm count was assessed. Phytochemical screening detected alkaloids, tannins, flavonoids, and saponins, which affect male fertility. A significant decrease in serum testosterone was observed in treated rats at 6 weeks (p < 0.005) and 12 weeks (p < 0.0001). Significant increases in glucose (p = 0.015) and LDL-cholesterol (p = 0.001) levels were recorded after 12 weeks of treatment. No significant changes were observed in body or testicular weights (p > 0.05). Epididymal sperm counts significantly decreased after 6 weeks (p < 0.01) and 12 weeks (p < 0.005) of treatment. This reduction is consistent with the histological analyses, which revealed seminiferous tubule damage and disrupted spermatogenesis in treated rats. Ethanolic M. esculenta leaf extracts impair reproduction in male Wistar rats, highlighting potential contraceptive effects.

References

[1]  Haslegrave, M. (2013) Ensuring the Inclusion of Sexual and Reproductive Health and Rights under a Sustainable Development Goal on Health in the Post-2015 Human Rights Framework for Development. Reproductive Health Matters, 21, 61-73.
https://doi.org/10.1016/s0968-8080(13)42742-8
[2]  Cleland, K., Zhu, H., Goldstuck, N., Cheng, L. and Trussell, J. (2012) The Efficacy of Intrauterine Devices for Emergency Contraception: A Systematic Review of 35 Years of Experience. Human Reproduction, 27, 1994-2000.
https://doi.org/10.1093/humrep/des140
[3]  Debry, J.-M. (2012) La contraception masculine « verte »: Mythe ou réalité? Basic and Clinical Andrology, 22, 152-161.
https://doi.org/10.1007/s12610-012-0182-3
[4]  Rathor, L. (2021) Medicinal Plants: A Rich Source of Bioactive Molecules Used in Drug Development. In: Mandal, S.C., Chakraborty, R. and Sen, S., Eds., Evidence Based Validation of Traditional Medicines, Springer Singapore, 195-209.
https://doi.org/10.1007/978-981-15-8127-4_10
[5]  Ganlaki, T.H.T.R., Medehouenou, T.C.M., Kougnimon, F.E.E., Mensah, D.D.J., Dougnon, T.V., Yédomonhan, H., Agbangla, C. and Akpovi, D.C. (2022) Étude ethnobotanique des plantes médicinales utilisées dans la contraception masculine au Sud-Bénin. Journal of Applied Biosciences, 169, 17645-17657.
[6]  Bahekar, S. and Kale, R. (2015) Antidiarrheal Activity of Ethanolic Extract of Manihot Esculenta Crantz Leaves in Wistar Rats. Journal of Ayurveda and Integrative Medicine, 6, 35-40.
[7]  Effoe, S., Gbekley, E.H., Mélila, M., Aban, A., Tchacondo, T., Osseyi, E., et al. (2020) Étude ethnobotanique des plantes alimentaires utilisées en médecine traditionnelle dans la région Maritime du Togo. International Journal of Biological and Chemical Sciences, 14, 2837-2853.
https://doi.org/10.4314/ijbcs.v14i8.15
[8]  Mohidin, S.R.N.S.P., Moshawih, S., Hermansyah, A., Asmuni, M.I., Shafqat, N. and Ming, L.C. (2023) Cassava (Manihot esculenta Crantz): A Systematic Review for the Pharmacological Activities, Traditional Uses, Nutritional Values, and Phytochemistry. Journal of Evidence-Based Integrative Medicine, 28, 1-26.
https://doi.org/10.1177/2515690x231206227
[9]  O’Donnell, L., Stanton, P. and de Kretser, D.M. (2000) Endocrinology of the Male Reproductive System and Spermatogenesis. In: Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., et al., Eds., Endotext, MDText.com, Inc., 64 p.
[10]  Thacharodi, A., Hassan, S., Acharya, G., Vithlani, A., Hoang Le, Q. and Pugazhendhi, A. (2023) Endocrine Disrupting Chemicals and Their Effects on the Reproductive Health in Men. Environmental Research, 236, Article 116825.
https://doi.org/10.1016/j.envres.2023.116825
[11]  Suede, S.H., Malik, A. and Sapra, A. (2025) Histology, Spermatogenesis. StatPearls. StatPearls Publishing.
[12]  Neto, F.T.L., Bach, P.V., Najari, B.B., Li, P.S. and Goldstein, M. (2016) Spermatogenesis in Humans and Its Affecting Factors. Seminars in Cell & Developmental Biology, 59, 10-26.
https://doi.org/10.1016/j.semcdb.2016.04.009
[13]  Sudhakaran, G., Kesavan, D., Kandaswamy, K., Guru, A. and Arockiaraj, J. (2024) Unravelling the Epigenetic Impact: Oxidative Stress and Its Role in Male Infertility-Associated Sperm Dysfunction. Reproductive Toxicology, 124, Article 108531.
https://doi.org/10.1016/j.reprotox.2023.108531
[14]  Houghton, P.J. and Raman, A. (1998) Laboratory Handbook for the Fractionation of Natural Extracts. Springer.
[15]  Charan, J. and Kantharia, N.D. (2013) How to Calculate Sample Size in Animal Studies? Journal of Pharmacology and Pharmacotherapeutics, 4, 303-306.
https://doi.org/10.4103/0976-500x.119726
[16]  Abu, A., Amuta, P., Buba, E. and Inusa, T. (2013) Evaluation of Antispermatogenic Effect of Garcinia kola Seed Extract in Albino Rats. Asian Pacific Journal of Reproduction, 2, 15-18.
https://doi.org/10.1016/s2305-0500(13)60108-6
[17]  Akpovi, C.D., Anago, A.E., Segbo, A.J., Manindji, C., Medehouenou, T.C.M., Loko, F., Vitale, L.M. and Pelletier, R.M. (2015) Blood Biochemical Parameters Levels Vary with Spermatogenesis in Seasonal Reproductive Model the Mink (Mustela Vison). International Journal of Biosciences, 6, 222-229.
[18]  Akpovi, C.D., Yoon, S.R., Vitale, M.L. and Pelletier, R. (2006) The Predominance of One of the SR-BI Isoforms Is Associated with Increased Esterified Cholesterol Levels Not Apoptosis in Mink Testis. Journal of Lipid Research, 47, 2233-2247.
https://doi.org/10.1194/jlr.m600162-jlr200
[19]  World Health Organization (2010) WHO Laboratory Manual for the Examination and Processing of Human Semen. 271 p.
[20]  Ajayi, E., Agarwal, A., Banerjee, U. and Olorunsogo, O. (2017) Ethanol Extract of Manihot Esculenta Leaf: A Potential Source of Antioxidant, Xanthine Oxidase and li-Pase Inhibitors. Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi Sec II a Genetica si Biologie Moleculara, Vol. 18, 17-23.
[21]  Jampa, M., Sutthanut, K., Weerapreeyakul, N., Tukummee, W., Wattanathorn, J. and Muchimapura, S. (2022) Multiple Bioactivities of Manihot esculenta Leaves: UV Filter, Anti-Oxidation, Anti-Melanogenesis, Collagen Synthesis Enhancement, and Anti-Adipogenesis. Molecules, 27, Article 1556.
https://doi.org/10.3390/molecules27051556
[22]  Andonova, T., Muhovski, Y., Fidan, H., Slavov, I., Stoyanova, A. and Dimitrova-Dyulgerova, I. (2021) Chemical Compounds, Antitumor and Antimicrobial Activities of Dry Ethanol Extracts from Koelreuteria Paniculata Laxm. Plants, 10, Article 2715.
https://doi.org/10.3390/plants10122715
[23]  Kavela, E.T.A., Szalóki-Dorkó, L. and Máté, M. (2023) The Efficiency of Selected Green Solvents and Parameters for Polyphenol Extraction from Chokeberry (Aronia melanocarpa (Michx)) Pomace. Foods, 12, Article 3639.
https://doi.org/10.3390/foods12193639
[24]  Cardoso, A.P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Rezaul Haque, M., et al. (2005) Processing of Cassava Roots to Remove Cyanogens. Journal of Food Composition and Analysis, 18, 451-460.
https://doi.org/10.1016/j.jfca.2004.04.002
[25]  Montagnac, J.A., Davis, C.R. and Tanumihardjo, S.A. (2009) Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comprehensive Reviews in Food Science and Food Safety, 8, 181-194.
https://doi.org/10.1111/j.1541-4337.2009.00077.x
[26]  Leung, K.W. and Wong, A.S. (2013) Ginseng and Male Reproductive Function. Spermatogenesis, 3, e26391.
https://doi.org/10.4161/spmg.26391
[27]  Anthonia Ezeabara, C. (2014) Comparative Determination of Phytochemical, Proximate and Mineral Compositions in Various Parts of Portulaca Oleracea L. Journal of Plant Sciences (Science Publishing Group), 2, 293-298.
https://doi.org/10.11648/j.jps.20140206.15
[28]  Pashapour, S., Saberivand, A., Khaki, A.A. and Saberivand, M. (2023) Effect of Saponin on Spermatogenesis and Testicular Structure in Streptozotocin-Induced Diabetic mice. Veterinary Research Forum, 14, 601-606.
[29]  Chung, K., Wong, T.Y., Wei, C., Huang, Y. and Lin, Y. (1998) Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38, 421-464.
https://doi.org/10.1080/10408699891274273
[30]  Delimont, N.M., Haub, M.D. and Lindshield, B.L. (2017) The Impact of Tannin Consumption on Iron Bioavailability and Status: A Narrative Review. Current Developments in Nutrition, 1, 1-12.
https://doi.org/10.3945/cdn.116.000042
[31]  Awodele, O., Oreagba, I.A., Odoma, S., Teixeira da Silva, J.A. and Osunkalu, V.O. (2012) Toxicological Evaluation of the Aqueous Leaf Extract of Moringa oleifera Lam. (Moringaceae). Journal of Ethnopharmacology, 139, 330-336.
https://doi.org/10.1016/j.jep.2011.10.008
[32]  Jegnie, M., Abula, T., Woldekidan, S., Chalchisa, D., Asmare, Z. and Afework, M. (2023) Acute and Sub-Acute Toxicity Evaluation of the Crude Methanolic Extract of Justicia schimperiana Leaf in Wistar Albino Rats. Journal of Experimental Pharmacology, 15, 467-483.
https://doi.org/10.2147/jep.s441273
[33]  Ngaha Njila, M.I., Massoma Lembè, D., Koloko, B.L., Yong Meng, G., Ebrahimi, M., Awad, E.A., et al. (2019) Sperm Parameters Quality and Reproductive Effects of Methanolic Extract of Alchornea cordifolia leaves on Senescent Male Rats. Andrologia, 51, e13359.
https://doi.org/10.1111/and.13359
[34]  Zhang, Q., Yang, C., Zhang, M., Lu, X., Cao, W., Xie, C., et al. (2021) Protective Effects of Ginseng Stem-Leaf Saponins on D-Galactose-Induced Reproductive Injury in Male Mice. Aging, 13, 8916-8928.
https://doi.org/10.18632/aging.202709
[35]  Udeme, N., Okafor, P. and Eleazu, C. (2015) The Metabolic Effects of Consumption of Yellow Cassava (Manihot esculenta Crantz) on Some Biochemical Parameters in Experimental Rats. International Journal of Toxicology, 34, 559-564.
https://doi.org/10.1177/1091581815606085
[36]  Rivadeneyra-Domínguez, E., Pérez-Pérez, J.E., Vázquez-Luna, A., Díaz-Sobac, R. and Rodríguez-Landa, J.F. (2020) Effects of Cassava Juice (Manihot esculenta Crantz) on Renal and Hepatic Function and Motor Impairments in Male Rats. Toxins, 12, Article 708.
https://doi.org/10.3390/toxins12110708
[37]  Akpovi, C.D., Murphy, B.D., Erickson, R.P. and Pelletier, R.-M. (2014) Dysregulation of Testicular Cholesterol Metabolism Following Spontaneous Mutation of the Niemann-Pick C1 Gene in Mice1. Biology of Reproduction, 91, 1-8.
https://doi.org/10.1095/biolreprod.114.119412
[38]  Akpovi, C.D., Julien, S.A.G., Marc, M.T.C., Eugénie, A.A.A., Huguette, A.B. and Loko, F. (2015) Lipid Profile in Type 2 Diabetic Subjects Aged 40 Years and over Living in Benin. International Journal of Biomedical Research, 6, Article 805.
[39]  Lee, J.H., Jung, H., Choi, J.D., Kang, J.Y., Yoo, T.K. and Park, Y.W. (2023) Non‐Linear Association between Testosterone and LDL Concentrations in Men. Andrology, 11, 1107-1113.
https://doi.org/10.1111/andr.13393
[40]  Cai, Z., Xi, H., Pan, Y., Jiang, X., Chen, L., Cai, Y., et al. (2015) Effect of Testosterone Deficiency on Cholesterol Metabolism in Pigs Fed a High-Fat and High-Cholesterol Diet. Lipids in Health and Disease, 14, Article No. 18.
https://doi.org/10.1186/s12944-015-0014-5
[41]  Alves, M.G., Martins, A.D., Cavaco, J.E., Socorro, S. and Oliveira, P.F. (2013) Diabetes, Insulin-Mediated Glucose Metabolism and Sertoli/Blood-Testis Barrier Function. Tissue Barriers, 1, e23992.
https://doi.org/10.4161/tisb.23992
[42]  Tavares, R.S., Portela, J.M.D., Sousa, M.I., Mota, P.C., Ramalho-Santos, J. and Amaral, S. (2017) High Glucose Levels Affect Spermatogenesis: An in Vitro Approach. Reproduction, Fertility and Development, 29, 1369-1378.
https://doi.org/10.1071/rd15475
[43]  Brožič, P., Kocbek, P., Sova, M., Kristl, J., Martens, S., Adamski, J., et al. (2009) Flavonoids and Cinnamic Acid Derivatives as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Molecular and Cellular Endocrinology, 301, 229-234.
https://doi.org/10.1016/j.mce.2008.09.004
[44]  Ibrahim, A.M., Al-Fanharawi, A.A. and Dokmak, H.A. (2023) Ovicidal, Immunotoxic and Endocrine Disrupting Effects of Saponin on Bulinus truncatus Snails with Special Emphasize on the Oxidative Stress Parameters, Genotoxicological, and Histopathological Alterations. Environmental Science and Pollution Research, 30, 78641-78652.
https://doi.org/10.1007/s11356-023-27668-w
[45]  Monageng, E., Offor, U., Takalani, N.B., Mohlala, K. and Opuwari, C.S. (2023) A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants, 12, Article 1559.
https://doi.org/10.3390/antiox12081559
[46]  Oyeyemi, M., Adeniji, D. and Olugbemi, J. (2011) The Spermiogram of Mesterolone Treated West African Dwarf Bucks with Testicular Degeneration. Nigerian Veterinary Journal, 32, 54-59.
https://doi.org/10.4314/nvj.v32i1.68993
[47]  Ciaramellano, F., Scipioni, L., Belà, B., Pignataro, G., Giacovazzo, G., Angelucci, C.B., et al. (2024) Combination of Hydrolysable Tannins and Zinc Oxide on Enterocyte Functionality: In Vitro Insights. Biomolecules, 14, Article 666.
https://doi.org/10.3390/biom14060666
[48]  Martin, L.J. and Touaibia, M. (2020) Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxidants, 9, Article 237.
https://doi.org/10.3390/antiox9030237
[49]  Zhang, X., Tang, Y., Lu, G. and Gu, J. (2023) Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients, 15, Article 2231.
https://doi.org/10.3390/nu15092231

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133