全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Explainable Machine Learning in Risk Management: Balancing Accuracy and Interpretability

DOI: 10.4236/jfrm.2025.143011, PP. 185-198

Keywords: Explainable Machine Learning, Risk Management, Accuracy, Interpretability, Decision-Making, Transparency, Risk Assessment, Machine Learning in Finance, Fraud Detection, Credit Scoring, SHAP, LIME

Full-Text   Cite this paper   Add to My Lib

Abstract:

Machine learning (ML) has revolutionized risk management by enabling organizations to make data-driven decisions with higher accuracy and speed. However, as machine learning models grow more complex, the need for explainability becomes paramount, particularly in high-stakes industries like finance, insurance, and healthcare. Explainable Machine Learning (XAI) techniques, such as LIME (Local Interpretable Model-agnostic Explanations) and SHAP (Shapley Additive Explanations), address this challenge by providing transparency into the decision-making processes of machine learning models. This paper explores the role of XAI in risk management, focusing on its application in fraud detection, credit scoring, and market forecasting. It discusses the importance of balancing accuracy and interpretability, considering the trade-offs between model performance and transparency. The paper highlights the potential of XAI to improve decision-making, foster trust among stakeholders, and ensure regulatory compliance. Finally, the paper discusses the challenges and future directions of XAI in risk management, emphasizing its role in building more transparent, accountable, and ethical AI systems.

References

[1]  Addy, W. A., Ajayi-Nifise, A. O., Bello, B. G., Tula, S. T., Odeyemi, O., & Falaiye, T. (2024a). AI in Credit Scoring: A Comprehensive Review of Models and Predictive Analytics. Global Journal of Engineering and Technology Advances, 18, 118-129.
https://doi.org/10.30574/gjeta.2024.18.2.0029
[2]  Addy, W. A., Ajayi-Nifise, A. O., Bello, B. G., Tula, S. T., Odeyemi, O., & Falaiye, T. (2024b). Machine Learning in Financial Markets: A Critical Review of Algorithmic Trading and Risk Management. International Journal of Science and Research Archive, 11, 1853-1862.
https://doi.org/10.30574/ijsra.2024.11.1.0292
[3]  Ahmad, T., Katari, P., Pamidi Venkata, A. K., Ravi, C., & Shaik, M. (2024). Explainable AI: Interpreting Deep Learning Models for Decision Support. Advances in Deep Learning Techniques, 4, 80-108.
[4]  Badhon, B., Chakrabortty, R. K., Anavatti, S. G., & Vanhoucke, M. (2025). A Multi-Module Explainable Artificial Intelligence Framework for Project Risk Management: Enhancing Transparency in Decision-making. Engineering Applications of Artificial Intelligence, 148, Article ID: 110427.
https://doi.org/10.1016/j.engappai.2025.110427
[5]  Balbaa, M. E., Astanakulov, O., Ismailova, N., & Batirova, N. (2023). Real-time Analytics in Financial Market Forecasting: A Big Data Approach. In Proceedings of the 7th International Conference on Future Networks and Distributed Systems (pp. 230-233). ACM.
https://doi.org/10.1145/3644713.3644743
[6]  Barnes, E., & Hutson, J. (2024). Navigating the Complexities of AI: The Critical Role of Interpretability and Explainability in Ensuring Transparency and Trust. International Journal of Multidisciplinary and Current Educational Research, 6, 248-256.
[7]  Bello, O. A. (2023). Machine Learning Algorithms for Credit Risk Assessment: An Economic and Financial Analysis. International Journal of Management, 10, 109-133.
[8]  Bello, O. A., Folorunso, A., Onwuchekwa, J., Ejiofor, O. E., Budale, F. Z., & Egwuonwu, M. N. (2023). Analysing the Impact of Advanced Analytics on fraud Detection: A Machine Learning Perspective. European Journal of Computer Science and Information Technology, 11, 103-126.
[9]  Bhattacharya, A. (2022). Applied Machine Learning Explainability Techniques: Make ML Models Explainable and Trustworthy for Practical Applications Using LIME, SHAP, and More. Packt Publishing Ltd.
[10]  Borketey, B. (2024). Real-time Fraud Detection Using Machine Learning. Journal of Data Analysis and Information Processing, 12, 189-209.
https://doi.org/10.4236/jdaip.2024.122011
[11]  Bücker, M., Szepannek, G., Gosiewska, A., & Biecek, P. (2022). Transparency, Auditability, and Explainability of Machine Learning Models in Credit Scoring. Journal of the Operational Research Society, 73, 70-90.
https://doi.org/10.1080/01605682.2021.1922098
[12]  Burkart, N., & Huber, M. F. (2021). A Survey on the Explainability of Supervised Machine Learning. Journal of Artificial Intelligence Research, 70, 245-317.
https://doi.org/10.1613/jair.1.12228
[13]  Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics, 8, Article 832.
https://doi.org/10.3390/electronics8080832
[14]  Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhingra, D., & Sikdar, B. (2023). A Review of Trustworthy and Explainable Artificial Intelligence (xai). IEEE Access, 11, 78994-79015.
https://doi.org/10.1109/ACCESS.2023.3294569
[15]  Dieber, J., & Kirrane, S. (2020). Why Model Why? Assessing the Strengths and Limitations of LIME. arXiv: 2012.00093
[16]  Dlamini, A. (2024). Machine Learning Techniques for Optimizing Recurring Billing and Revenue Collection in SaaS Payment Platforms. Journal of Computational Intelligence, Machine Reasoning, and Decision-Making, 9, 1-14.
[17]  Dziugaite, G. K., Ben-David, S., & Roy, D. M. (2020). Enforcing Interpretability and Its Statistical Impacts: Trade-Offs between Accuracy and Interpretability. arXiv: 2010.13764
[18]  Fritz-Morgenthal, S., Hein, B., & Papenbrock, J. (2022). Financial Risk Management and Explainable, Trustworthy, Responsible Ai. Frontiers in Artificial Intelligence, 5, Article 779799.
https://doi.org/10.3389/frai.2022.779799
[19]  Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K. et al. (2024). Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognitive Computation, 16, 45-74.
https://doi.org/10.1007/s12559-023-10179-8
[20]  Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2023). Measures for Explainable AI: Explanation Goodness, User Satisfaction, Mental Models, Curiosity, Trust, and Human-AI Performance. Frontiers in Computer Science, 5, Article 1096357.
https://doi.org/10.3389/fcomp.2023.1096257
[21]  Hong, S. R., Hullman, J., & Bertini, E. (2020). Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs. Proceedings of the ACM on Human-Computer Interaction, 4, 1-26.
https://doi.org/10.1145/3392878
[22]  Hosain, M. T., Jim, J. R., Mridha, M. F., & Kabir, M. M. (2024). Explainable AI Approaches in Deep Learning: Advancements, Applications and Challenges. Computers and Electrical Engineering, 117, Article ID: 109246.
https://doi.org/10.1016/j.compeleceng.2024.109246
[23]  Huang, A. A., & Huang, S. Y. (2023). Increasing Transparency in Machine Learning through Bootstrap Simulation and Shapely Additive Explanations. PLOS ONE, 18, e0281922.
https://doi.org/10.1371/journal.pone.0281922
[24]  Huang, X. (2024). Predictive Models: Regression, Decision Trees, and Clustering. Applied and Computational Engineering, 79, 124-133.
https://doi.org/10.54254/2755-2721/79/20241551
[25]  Kapale, R., Deshpande, P., Shukla, S., Kediya, S., Pethe, Y., & Metre, S. (2024). Explainable AI for Fraud Detection: Enhancing Transparency and Trust in Financial Decision-making. In 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI) (pp. 1-6). IEEE.
https://doi.org/10.1109/idicaiei61867.2024.10842874
[26]  Leo, M., Sharma, S., & Maddulety, K. (2019). Machine Learning in Banking Risk Management: A Literature Review. Risks, 7, Article 29.
https://doi.org/10.3390/risks7010029
[27]  Lisboa, P. J. G., Saralajew, S., Vellido, A., Fernández-Domenech, R., & Villmann, T. (2023). The Coming of Age of Interpretable and Explainable Machine Learning Models. Neurocomputing, 535, 25-39.
https://doi.org/10.1016/j.neucom.2023.02.040
[28]  Maier, M., Carlotto, H., Saperstein, S., Sanchez, F., Balogun, S., & Merritt, S. (2020). Improving the Accuracy and Transparency of Underwriting with Artificial Intelligence to Transform the Life‐insurance Industry. AI Magazine, 41, 78-93.
https://doi.org/10.1609/aimag.v41i3.5320
[29]  Malhotra, R., & Malhotra, D. K. (2023). The Impact of Technology, Big Data, and Analytics: The Evolving Data-Driven Model of Innovation in the Finance Industry. The Journal of Financial Data Science, 5, 50-65.
https://doi.org/10.3905/jfds.2023.1.129
[30]  Moscato, V., Picariello, A., & Sperlí, G. (2021). A Benchmark of Machine Learning Approaches for Credit Score Prediction. Expert Systems with Applications, 165, Article ID: 113986.
https://doi.org/10.1016/j.eswa.2020.113986
[31]  Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y. et al. (2023). From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ACM Computing Surveys, 55, 1-42.
https://doi.org/10.1145/3583558
[32]  Odonkor, B., Kaggwa, S., Uwaoma, P. U., Hassan, A. O., & Farayola, O. A. (2024). The Impact of AI on Accounting Practices: A Review: Exploring How Artificial Intelligence Is Transforming Traditional Accounting Methods and Financial Reporting. World Journal of Advanced Research and Reviews, 21, 172-188.
https://doi.org/10.30574/wjarr.2024.21.1.2721
[33]  Oguntibeju, O. O. (2024). Mitigating Artificial Intelligence Bias in Financial Systems: A Comparative Analysis of Debiasing Techniques. Asian Journal of Research in Computer Science, 17, 165-178.
https://doi.org/10.9734/ajrcos/2024/v17i12536
[34]  Ohana, J. J., Ohana, S., Benhamou, E., Saltiel, D., & Guez, B. (2021). Explainable AI (XAI) Models Applied to the Multi-Agent Environment of Financial Markets. In D. Calvaresi, A. Najjar, M. Winikoff, & K. Främling (eds.), Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2021 (pp. 189-207). Springer International Publishing.
https://doi.org/10.1007/978-3-030-82017-6_12
[35]  Olushola, A., & Mart, J. (2024). Fraud Detection using Machine Learning. Science Open.
[36]  Rane, N., Choudhary, S., & Rane, J. (2023). Explainable Artificial Intelligence (XAI) Approaches for Transparency and Accountability in Financial Decision-Making. SSRN Electronic Journal. (Preprint)
https://doi.org/10.2139/ssrn.4640316
[37]  Rudin, C. (2019). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, 1, 206-215.
https://doi.org/10.1038/s42256-019-0048-x
[38]  Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., & Zhong, C. (2022). Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. Statistics Surveys, 16, 1-85.
https://doi.org/10.1214/21-ss133
[39]  Salih, A. M., Raisi‐Estabragh, Z., Galazzo, I. B., Radeva, P., Petersen, S. E., Lekadir, K. et al. (2025). A Perspective on Explainable Artificial Intelligence Methods: SHAP and Lime. Advanced Intelligent Systems, 7, Article ID: 2400304.
https://doi.org/10.1002/aisy.202400304
[40]  Vimbi, V., Shaffi, N., & Mahmud, M. (2024). Interpreting Artificial Intelligence Models: A Systematic Review on the Application of LIME and SHAP in Alzheimer’s Disease Detection. Brain Informatics, 11, Article No. 10.
https://doi.org/10.1186/s40708-024-00222-1
[41]  Wilson, A., & Anwar, M. R. (2024). The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. International Transactions on Artificial Intelligence (ITALIC), 3, 97-107.
https://doi.org/10.33050/italic.v3i1.656

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133