Seabed-origin oil spills pose distinct challenges in marine pollution management due to their complex transport dynamics and weathering processes. This study applies the OpenDrift’s OpenOil module to simulate the transport and fate of oil in two seabed-origin spill scenarios: (a) the 2019 Baniyas refinery spill in Syria, resulting from leakage in underwater pipelines, and (b) a natural oil seep near Zakynthos, Greece (2017), where hydrocarbons naturally escape from the seafloor. The Baniyas spill was used as a validation case, integrating Sentinel-2 satellite imagery and open-source atmospheric and marine data derived from the Climate Change and Copernicus Marine services to refine model calibration. The Zakynthos seep was analyzed under controlled conditions to assess the abilities of the OpenOil module to simulate naturally occurring oil slicks. Key findings indicate that oil density plays a critical role in evaporation dynamics. Simulations revealed that oils above a specific density threshold showed negligible evaporation, remaining as persistent slicks in the water column, whereas lighter oils exhibited substantial evaporation rates, significantly altering their dispersion behavior.
Carpenter, A. and Kostianoy, A.G. (2018) Oil Pollution in the Mediterranean Sea: Part I: The International Context. The Handbook of Environmental Chemistry, Vol. 83, Springer. https://doi.org/10.1007/978-3-030-12236-2
[3]
Chen, H., An, W., You, Y., Lei, F., Zhao, Y. and Li, J. (2015) Numerical Study of Underwater Fate of Oil Spilled from Deepwater Blowout. Ocean Engineering, 110, 227-243. https://doi.org/10.1016/j.oceaneng.2015.10.025
[4]
French-McCay, D.P., Robinson, H.J., Spaulding, M.L., Li, Z., Horn, M., Gloekler, M.D., et al. (2021) Validation of Oil Fate and Mass Balance for the Deepwater Horizon Oil Spill: Evaluation of Water Column Partitioning. Marine Pollution Bulletin, 173, Article ID: 113064. https://doi.org/10.1016/j.marpolbul.2021.113064
[5]
Wang, Y., Lee, K., Liu, D., Guo, J., Han, Q., Liu, X., et al. (2020) Environmental Impact and Recovery of the Bohai Sea Following the 2011 Oil Spill. Environmental Pollution, 263, Article ID: 114343. https://doi.org/10.1016/j.envpol.2020.114343
[6]
Keramea, P., Spanoudaki, K., Zodiatis, G., Gikas, G. and Sylaios, G. (2021) Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges. Journal of Marine Science and Engineering, 9, Article No. 181. https://doi.org/10.3390/jmse9020181
[7]
Papaioannou, V., et al. (2025) Assessment of Oil Spill Dispersion and Weathering Processes in Saronic Gulf. Advances in Hydrology & Meteorology, 2, Article ID: 000550. https://doi.org/10.33552/ahm.2025.02.000550
[8]
Fingas, M. (2017) In Situ Burning: An Update. In: Fingas, M., Ed., Oil Spill Science and Technology, Elsevier, 483-676. https://doi.org/10.1016/b978-0-12-809413-6.00010-2
[9]
Simecek-Beatty, D. and Lehr, W.J. (2017) Extended Oil Spill Spreading with Langmuir Circulation. Marine Pollution Bulletin, 122, 226-235. https://doi.org/10.1016/j.marpolbul.2017.06.047
[10]
Zafirakou, A. (2019) Oil Spill Dispersion Forecasting Models. In: Fouzia, H.B., Ed., Monitoring of Marine Pollution, IntechOpen, 3-5. https://doi.org/10.5772/intechopen.81764
[11]
Daling, P.S., Moldestad, M.Ø., Johansen, Ø., Lewis, A. and Rødal, J. (2003) Norwegian Testing of Emulsion Properties at Sea—The Importance of Oil Type and Release Conditions. Spill Science & Technology Bulletin, 8, 123-136. https://doi.org/10.1016/s1353-2561(03)00016-1
[12]
McGenity, T.J., Folwell, B.D., McKew, B.A. and Sanni, G.O. (2012) Marine Crude-Oil Biodegradation: A Central Role for Interspecies Interactions. Aquatic Biosystems, 8, Article No. 10. https://doi.org/10.1186/2046-9063-8-10
[13]
Ward, C.P., Sharpless, C.M., Valentine, D.L., French-McCay, D.P., Aeppli, C., White, H.K., et al. (2018) Partial Photochemical Oxidation Was a Dominant Fate of Deepwater Horizon Surface Oil. Environmental Science & Technology, 52, 1797-1805. https://doi.org/10.1021/acs.est.7b05948
[14]
Dagestad, K., Röhrs, J., Breivik, Ø. and Ådlandsvik, B. (2018) OpenDrift v1.0: A Generic Framework for Trajectory Modelling. Geoscientific Model Development, 11, 1405-1420. https://doi.org/10.5194/gmd-11-1405-2018
[15]
Hole, L.R., Dagestad, K., Röhrs, J., Wettre, C., Kourafalou, V.H., Androulidakis, Y., et al. (2019) The Deepwater Horizon Oil Slick: Simulations of River Front Effects and Oil Droplet Size Distribution. Journal of Marine Science and Engineering, 7, Article No. 329. https://doi.org/10.3390/jmse7100329
[16]
Androulidakis, Y., Kourafalou, V., Robert Hole, L., Le Hénaff, M. and Kang, H. (2020) Pathways of Oil Spills from Potential Cuban Offshore Exploration: Influence of Ocean Circulation. Journal of Marine Science and Engineering, 8, Article No. 535. https://doi.org/10.3390/jmse8070535
[17]
Keramea, P., Kokkos, N., Zodiatis, G., Sylaios, G., Coppini, G., Peña, J., Benjumeda Herreros, P., Sepp-Neves, A.A., Lardner, R., Liubartseva, S., Soloviev, D., Scuro, M., Nicolaidis, A. and Viola, F. (2023) Oil Spill Modeling Assessment of the 2021 Syrian Oil Spill Using SAR Imagery and Multi-Forcing Forecasts. EGU General Assembly 2023, Vienna, 23-28 April 2023, EGU23-1573. https://doi.org/10.5194/egusphere-egu23-1573
[18]
Zwijnenburg, W. (2019) Iranian Oil Spills on Syria’s Shores: A Brief OSINT Over-view of an Environmental Incident. https://www.bellingcat.com/news/mena/2019/07/31/iranian-oil-spills-on-syrias-shores-a-brief-osint-overview-of-an-environmental-incident/
[19]
Kolokoussis, P. and Karathanassi, V. (2018) Oil Spill Detection and Mapping Using Sentinel 2 Imagery. Journal of Marine Science and Engineering, 6, Article No. 4. https://doi.org/10.3390/jmse6010004
[20]
Rigakis, N., Nikolaou, K., Marnelis, F. and Pakos, T. (2007) The Utility of Oil Shows in the Hydrocarbon Exploration of Western Greece. Bulletin of the Geological Society of Greece, 40, 959-971. https://doi.org/10.12681/bgsg.16779
[21]
Li, C., Miller, J., Wang, J., Koley, S.S. and Katz, J. (2017) Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks. Journal of Geophysical Research: Oceans, 122, 7938-7957. https://doi.org/10.1002/2017jc013193
[22]
Serra, T., Granata, T., Colomer, J., Stips, A., Møhlenberg, F. and Casamitjana, X. (2003) The Role of Advection and Turbulent Mixing in the Vertical Distribution of Phytoplankton. Estuarine, Coastal and Shelf Science, 56, 53-62. https://doi.org/10.1016/s0272-7714(02)00120-8
[23]
Tkalich, P. and Chan, E.S. (2002) Vertical Mixing of Oil Droplets by Breaking Waves. Marine Pollution Bulletin, 44, 1219-1229. https://doi.org/10.1016/s0025-326x(02)00178-9
[24]
Azevedo, A., Oliveira, A., Fortunato, A.B., Zhang, J. and Baptista, A.M. (2014) A Cross-Scale Numerical Modeling System for Management Support of Oil Spill Accidents. Marine Pollution Bulletin, 80, 132-147. https://doi.org/10.1016/j.marpolbul.2014.01.028
[25]
Lehr, W., Jones, R., Evans, M., Simecek-Beatty, D. and Overstreet, R. (2002) Revisions of the ADIOS Oil Spill Model. Environmental Modelling & Software, 17, 189-197. https://doi.org/10.1016/s1364-8152(01)00064-0
[26]
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D. and Thépaut, J.-N. (2023) ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
[27]
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G. and Pi-nardi, N. (2020) Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
[28]
Korres, G., Oikonomou, C., Denaxa, D. and Sotiropoulou, M. (2023) Mediterranean Sea Waves Analysis and Forecast (Copernicus Marine Service MED-Waves, MEDWAΜ4 System) (Version 1) [Data Set]. Copernicus Marine Service (CMS). https://doi.org/10.25423/cmcc/medsea_analysisforecast_wav_006_017_medwam4
[29]
Breivik, Ø., Bidlot, J. and Janssen, P.A.E.M. (2016) A Stokes Drift Approximation Based on the Phillips Spectrum. Ocean Modelling, 100, 49-56. https://doi.org/10.1016/j.ocemod.2016.01.005
[30]
Lamarre, E. and Melville, W.K. (1991) Air Entrainment and Dissipation in Breaking Waves. Nature, 351, 469-472. https://doi.org/10.1038/351469a0
[31]
Li, Z., Spaulding, M.L. and French-McCay, D. (2017) An Algorithm for Modeling Entrainment and Naturally and Chemically Dispersed Oil Droplet Size Distribution under Surface Breaking Wave Conditions. Marine Pollution Bulletin, 119, 145-152. https://doi.org/10.1016/j.marpolbul.2017.03.048
[32]
Keramea, P., Kokkos, N., Gikas, G. and Sylaios, G. (2022) Operational Modeling of North Aegean Oil Spills Forced by Real-Time Met-Ocean Forecasts. Journal of Marine Science and Engineering, 10, Article No. 411. https://doi.org/10.3390/jmse10030411
[33]
Röhrs, J., Dagestad, K., Asbjørnsen, H., Nordam, T., Skancke, J., Jones, C.E., et al. (2018) The Effect of Vertical Mixing on the Horizontal Drift of Oil Spills. Ocean Science, 14, 1581-1601. https://doi.org/10.5194/os-14-1581-2018
[34]
Liu, R., Boufadel, M.C., Zhao, L., Nedwed, T., Lee, K., Marcotte, G., et al. (2022) Oil Droplet Formation and Vertical Transport in the Upper Ocean. Marine Pollution Bulletin, 176, Article ID: 113451. https://doi.org/10.1016/j.marpolbul.2022.113451
[35]
Johansen, Ø. (2003) Development and Verification of Deep-Water Blowout Models. Marine Pollution Bulletin, 47, 360-368. https://doi.org/10.1016/s0025-326x(03)00202-9
[36]
Johansen, Ø., Reed, M. and Bodsberg, N.R. (2015) Natural Dispersion Revisited. Marine Pollution Bulletin, 93, 20-26. https://doi.org/10.1016/j.marpolbul.2015.02.026
[37]
Delvigne, G.A.L. and Sweeney, C.E. (1988) Natural Dispersion of Oil. Oil and Chemical Pollution, 4, 281-310. https://doi.org/10.1016/s0269-8579(88)80003-0
[38]
Visser, A. (1997) Using Random Walk Models to Simulate the Vertical Distribution of Particles in a Turbulent Water Column. Marine Ecology Progress Series, 158, 275-281. https://doi.org/10.3354/meps158275
[39]
Wang, C., Han, L., Zhang, Y., Jiang, A., Wang, J. and Niu, X. (2023) Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil. Journal of Marine Science and Engineering, 12, Article No. 47. https://doi.org/10.3390/jmse12010047
[40]
Stiver, W. and Mackay, D. (1984) Evaporation Rate of Spills of Hydrocarbons and Petroleum Mixtures. Environmental Science & Technology, 18, 834-840. https://doi.org/10.1021/es00129a006
[41]
Jones, R. K. (1997) A Simplified Pseudo-Component Oil Evaporation Model. Proceedings of the 20th Arctic and Marine Oil Spill Program Technical Seminar, Vancouver, 11-13 June 1997, 43-61. https://inis.iaea.org/search/search.aspx?orig_q=RN:29000027
[42]
Devis Morales, A., Rodríguez Rubio, E. and Rincón Martínez, D. (2022) Numerical Modeling of Oil Spills in the Gulf of Morrosquillo, Colombian Caribbean. CT&F—Ciencia, Tecnología y Futuro, 12, 69-83. https://doi.org/10.29047/01225383.396
[43]
Adcroft, A., Hallberg, R., Dunne, J.P., Samuels, B.L., Galt, J.A., Barker, C.H., et al. (2010) Simulations of Underwater Plumes of Dissolved Oil in the Gulf of Mexico. Geophysical Research Letters, 37, L18605. https://doi.org/10.1029/2010gl044689
[44]
European Space Agency (ESA) (2024) Copernicus Sentinel Data. https://dataspace.copernicus.eu/
[45]
Fingas, M.F. (1997) Studies on the Evaporation of Crude Oil and Petroleum Products: I. The Relationship between Evaporation Rate and Time. Journal of Hazardous Materials, 56, 227-236. https://doi.org/10.1016/s0304-3894(97)00050-2