In this paper, we present some properties of m-convex stochastic processes. The most important results are: a generalization of the sandwich theorem and a result on Hyers-Ulam stability, given for m-convex functions. The first result allows us to bound an m-convex stochastic process by two convex stochastic processes, and the second allows us to approximate controlled perturbations of an m-convex stochastic process by an m-convex function. As a consequence of these two results, we obtain a Hermite-Hadamard type inequality for m-convex stochastic processes.
References
[1]
Nagy, B. (1974) On a Generalization of the Cauchy Equation. AequationesMathematicae, 10, 165-171. https://doi.org/10.1007/bf01832853
[2]
Nikodem, K. (1980) On Convex Stochastic Processes. AequationesMathematicae, 20, 184-197. https://doi.org/10.1007/bf02190513
[3]
Barráez, D., González, L., Merentes, N. and Moros, A.M. (2015) On H-Convex Stochastic Process. MathematicaAeterna, 5, 571-581.
[4]
Gonzalez, L., Merentes, N. and Valera-López, M. (2015) Some Estimates on the Her-mite-Hadamard Inequality through Convex and Quasi-Convex Stochastic Processes, Math. Aeterna, 5, 745-767.
[5]
Hudzik, H. and Maligranda, L. (1994) Some Remarks Ons-Convex Functions. AequationesMathematicae, 48, 100-111. https://doi.org/10.1007/bf01837981
[6]
Kotrys, D. (2011) Hermite-Hadamard Inequality for Convex Stochastic Processes. Aequationesmathematicae, 83, 143-151. https://doi.org/10.1007/s00010-011-0090-1
[7]
Kotrys, D. (2012) Remarks on Strongly Convex Stochastic Processes. Aequationesmathematicae, 86, 91-98. https://doi.org/10.1007/s00010-012-0163-9
[8]
Kotrys, D. (2014) Some Characterizations of Strongly Convex Stochastic Processes. Mathematica Aeterna, 4, 855-861.
[9]
Kotrys, D. (2015) Remarks on Jensen, Hermite-Hadamard and Fejér Inequalities for Strongly Convex Stochastic Processes. MathematicaAeterna, 5, 95-104.
[10]
Tonder, G. (1984) Some Generalizations of the Convexity. ProceedingsoftheColloquiumonApproximationandOptimization, Cluj-Napoca, 25-27 October 1984, 329-338.
[11]
Bakula, M.K., Pecaric, J. and Ribicic, M. (2006) Companion Inequalities to Jensens Inequality for M-Convex and (a, m)-Convex Functions. Journal of Inequalities in Pure and Applied Mathematics, 7, 26-35.
[12]
Baron, K., Matkowski, J. and Nikodem, K. (1994) A Sandwich with Convexity. MathematicaPannonica, 5, 139-144.
[13]
Dragomir, S.S. (2002) On Some New Inequalities of Hermite-Hadamard Type for m—Convex Functions. TamkangJournalofMathematics, 33, 45-56. https://doi.org/10.5556/j.tkjm.33.2002.304
[14]
Dragomir, S.S. and Toader, G. (1993) Some Inequalities for m-Convex Functions. Studia Universitatis Babes-Bolyai Matematica, 38, 21-28.
[15]
Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2015) On Inequalities of Fejér and Hermite-Hadamard Types for Strongly m-Convex Functions. Economics, 1, 10-14.
[16]
Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2015) On Strongly m-Convex Functions. MathematicaAeterna, 5, 521-535.
[17]
Lara, T., Rosales, E. and Sanchez, J.L. (2015) New Properties of M-Convex Functions. InternationalJournalofMathematicalAnalysis, 9, 735-742. https://doi.org/10.12988/ijma.2015.412389
[18]
Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2016) On Approximate M-Convexity of Sub-Homogeneous Functions. Mathematica Aeterna, 6, 243-254.
[19]
Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2016) Properties of Jensen M-Convex Functions. InternationalJournalofMathematicalAnalysis, 10, 795-805. https://doi.org/10.12988/ijma.2016.511275
[20]
Lara, T., Matkowski, J., Merentes, N., Quintero, R. and Wróbel, M. (2017) A Generalization of M-Convexity and a Sandwich Theorem. AnnalesMathematicaeSilesianae, 31, 107-126. https://doi.org/10.1515/amsil-2017-0003
[21]
Lara, T., Quintero, R. and Rosales, E. (2017) M-Convexity and Functional Equations. MoroccanJournalofPureandAppliedAnalysis, 3, 56-62. https://doi.org/10.1515/mjpaa-2017-0005
[22]
Lara, T., Merentes, N., Páles, Z., Quintero, R. and Rosales, E. (2018) On M-Convexity on Real Linear Spaces. Manuscript. UPI Journal of Mathematics and Biostatistics, 1.
[23]
Lara, T., Rosales, E. and Sanchéz, J.L. (2018) Properties of Differentiable M-Convex Function. In: BoletíndelaAsociaciónMatemáticaVenezolana, Volume XXIV, Asociación Matemática Venezolana.
[24]
Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2019) On m-Convexity of Set-Valued Functions. AdvancesinOperatorTheory, 4, 767-783. https://doi.org/10.15352/aot.1810-1429
[25]
Maksa, G. and Páles, Z. (2011) The Equality Case in Some Recent Convexity Inequalities. OpusculaMathematica, 31, 269-277. https://doi.org/10.7494/opmath.2011.31.2.269
[26]
Matkowski, J. and Wrobel, M. (1993) Remark on M-Convexity and Sandwich Theo-rem. ProceedingsoftheAmericanMathematicalSociety, 119, 187-197.
[27]
Merentes, N. and Nikodem, K. (2015) Strong Convexity and Separation Theorems. AequationesMathematicae, 90, 47-55. https://doi.org/10.1007/s00010-015-0360-4
[28]
Nikodem, K. and Wasowicz, S. (1995) A Sandwich Theorem and Hyers—Ulam Stability of Affine Functions. AequationesMathematicae, 49, 160-164. https://doi.org/10.1007/bf01827935
[29]
Nikodem, K. and Páles, Z. (2007) Generalized Convexity and Separation Theorems. JournalofConverAnalysis, 14, 239.
[30]
Özdemir, M.E., Avcı, M. and Set, E. (2010) On Some Inequalities of Hermite-Hadamard Type Viam-Convexity. AppliedMathematicsLetters, 23, 1065-1070. https://doi.org/10.1016/j.aml.2010.04.037
[31]
Sobczyk, K. (1991) Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer.