全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Sandwich Theorem for m-Convex Stochastic Processes

DOI: 10.4236/apm.2025.157021, PP. 459-471

Keywords: m-Convex Stochastic Processes, Hermite-Hadamard Inequality, Sandwich Theorem, Hyer-Ulam’s Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we present some properties of m-convex stochastic processes. The most important results are: a generalization of the sandwich theorem and a result on Hyers-Ulam stability, given for m-convex functions. The first result allows us to bound an m-convex stochastic process by two convex stochastic processes, and the second allows us to approximate controlled perturbations of an m-convex stochastic process by an m-convex function. As a consequence of these two results, we obtain a Hermite-Hadamard type inequality for m-convex stochastic processes.

References

[1]  Nagy, B. (1974) On a Generalization of the Cauchy Equation. Aequationes Mathematicae, 10, 165-171.
https://doi.org/10.1007/bf01832853
[2]  Nikodem, K. (1980) On Convex Stochastic Processes. Aequationes Mathematicae, 20, 184-197.
https://doi.org/10.1007/bf02190513
[3]  Barráez, D., González, L., Merentes, N. and Moros, A.M. (2015) On H-Convex Stochastic Process. Mathematica Aeterna, 5, 571-581.
[4]  Gonzalez, L., Merentes, N. and Valera-López, M. (2015) Some Estimates on the Her-mite-Hadamard Inequality through Convex and Quasi-Convex Stochastic Processes, Math. Aeterna, 5, 745-767.
[5]  Hudzik, H. and Maligranda, L. (1994) Some Remarks Ons-Convex Functions. Aequationes Mathematicae, 48, 100-111.
https://doi.org/10.1007/bf01837981
[6]  Kotrys, D. (2011) Hermite-Hadamard Inequality for Convex Stochastic Processes. Aequationes mathematicae, 83, 143-151.
https://doi.org/10.1007/s00010-011-0090-1
[7]  Kotrys, D. (2012) Remarks on Strongly Convex Stochastic Processes. Aequationes mathematicae, 86, 91-98.
https://doi.org/10.1007/s00010-012-0163-9
[8]  Kotrys, D. (2014) Some Characterizations of Strongly Convex Stochastic Processes. Mathematica Aeterna, 4, 855-861.
[9]  Kotrys, D. (2015) Remarks on Jensen, Hermite-Hadamard and Fejér Inequalities for Strongly Convex Stochastic Processes. Mathematica Aeterna, 5, 95-104.
[10]  Tonder, G. (1984) Some Generalizations of the Convexity. Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, 25-27 October 1984, 329-338.
[11]  Bakula, M.K., Pecaric, J. and Ribicic, M. (2006) Companion Inequalities to Jensens Inequality for M-Convex and (a, m)-Convex Functions. Journal of Inequalities in Pure and Applied Mathematics, 7, 26-35.
[12]  Baron, K., Matkowski, J. and Nikodem, K. (1994) A Sandwich with Convexity. Mathematica Pannonica, 5, 139-144.
[13]  Dragomir, S.S. (2002) On Some New Inequalities of Hermite-Hadamard Type for mConvex Functions. Tamkang Journal of Mathematics, 33, 45-56.
https://doi.org/10.5556/j.tkjm.33.2002.304
[14]  Dragomir, S.S. and Toader, G. (1993) Some Inequalities for m-Convex Functions. Studia Universitatis Babes-Bolyai Matematica, 38, 21-28.
[15]  Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2015) On Inequalities of Fejér and Hermite-Hadamard Types for Strongly m-Convex Functions. Economics, 1, 10-14.
[16]  Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2015) On Strongly m-Convex Functions. Mathematica Aeterna, 5, 521-535.
[17]  Lara, T., Rosales, E. and Sanchez, J.L. (2015) New Properties of M-Convex Functions. International Journal of Mathematical Analysis, 9, 735-742.
https://doi.org/10.12988/ijma.2015.412389
[18]  Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2016) On Approximate M-Convexity of Sub-Homogeneous Functions. Mathematica Aeterna, 6, 243-254.
[19]  Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2016) Properties of Jensen M-Convex Functions. International Journal of Mathematical Analysis, 10, 795-805.
https://doi.org/10.12988/ijma.2016.511275
[20]  Lara, T., Matkowski, J., Merentes, N., Quintero, R. and Wróbel, M. (2017) A Generalization of M-Convexity and a Sandwich Theorem. Annales Mathematicae Silesianae, 31, 107-126.
https://doi.org/10.1515/amsil-2017-0003
[21]  Lara, T., Quintero, R. and Rosales, E. (2017) M-Convexity and Functional Equations. Moroccan Journal of Pure and Applied Analysis, 3, 56-62.
https://doi.org/10.1515/mjpaa-2017-0005
[22]  Lara, T., Merentes, N., Páles, Z., Quintero, R. and Rosales, E. (2018) On M-Convexity on Real Linear Spaces. Manuscript. UPI Journal of Mathematics and Biostatistics, 1.
[23]  Lara, T., Rosales, E. and Sanchéz, J.L. (2018) Properties of Differentiable M-Convex Function. In: Boletín de la Asociación Matemática Venezolana, Volume XXIV, Asociación Matemática Venezolana.
[24]  Lara, T., Merentes, N., Quintero, R. and Rosales, E. (2019) On m-Convexity of Set-Valued Functions. Advances in Operator Theory, 4, 767-783.
https://doi.org/10.15352/aot.1810-1429
[25]  Maksa, G. and Páles, Z. (2011) The Equality Case in Some Recent Convexity Inequalities. Opuscula Mathematica, 31, 269-277.
https://doi.org/10.7494/opmath.2011.31.2.269
[26]  Matkowski, J. and Wrobel, M. (1993) Remark on M-Convexity and Sandwich Theo-rem. Proceedings of the American Mathematical Society, 119, 187-197.
[27]  Merentes, N. and Nikodem, K. (2015) Strong Convexity and Separation Theorems. Aequationes Mathematicae, 90, 47-55.
https://doi.org/10.1007/s00010-015-0360-4
[28]  Nikodem, K. and Wasowicz, S. (1995) A Sandwich Theorem and Hyers—Ulam Stability of Affine Functions. Aequationes Mathematicae, 49, 160-164.
https://doi.org/10.1007/bf01827935
[29]  Nikodem, K. and Páles, Z. (2007) Generalized Convexity and Separation Theorems. Journal of Conver Analysis, 14, 239.
[30]  Özdemir, M.E., Avcı, M. and Set, E. (2010) On Some Inequalities of Hermite-Hadamard Type Viam-Convexity. Applied Mathematics Letters, 23, 1065-1070.
https://doi.org/10.1016/j.aml.2010.04.037
[31]  Sobczyk, K. (1991) Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133