全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resistance Profile of Anopheles gambiae s.l. to Insecticides in the Atlantic, Littoral and Oueme Departments of Benin in West Africa

DOI: 10.4236/abb.2025.167017, PP. 261-276

Keywords: Insecticides Resistance, Anopheles gambiae s.l., Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context: Malaria is one of the deadliest diseases in sub-Saharan Africa. Mosquitoes of the genus Anopheles are the main vectors of malaria. Several methods have been implemented to combat these mosquito vectors, including vector control. This relies on the use of long-lasting insecticide-treated mosquito nets (LLINs) and indoor residual spraying (IRS). In order to update data on the emergence of resistance in vectors, this study was conducted to assess the sensitivity of Anopheles gambiae s.l. to pyrethroids and chlorfenapyr in three departments in southern Benin. Methodology: Larval surveys were carried out in the communes of S?-Ava, Ouidah, Cotonou, Adjarra and Adjohoun in December 2022. The larvae obtained were transported to and reared at the insectarium of the Centre de Recherche Entomologique de Cotonou (CREC). Three- to five-day-old adult females of Anopheles gambiae s.l. were subjected to susceptibility tests in WHO tubes with papers impregnated with deltamethrin (0.05%), permethrin (0.75%), and alpha-cypermethrin (0.05%) and also with the combination of the synergist PBO + deltamethrin and PBO + alpha-cypermethrin. Biological tests in CDC bottles were also carried out on these populations using chlorfenapyr (100 μg). PCR was then used to identify the species of the Anopheles gambiae complex, the frequency of the L1014F and Ace-1 kdr genes and finally the level of expression of detoxification enzymes (esterases, oxidases and Gluthation-S transferases) was determined for each commune. Results: Anopheles gambiae s.l. showed strong resistance to the pyrethroids used, with a mortality rate of less than 90%. On the other hand, absolute sensitivity to the synergists PBO + pyrethroids and to chlorfenapyr was recorded in all the areas studied. PCR revealed two species of the Anopheles complex, with Anopheles coluzzii predominating over Anopheles gambiae in the study areas. In all the sites studied, the frequency of the kdr L1014F resistance allele was very high, while the frequency of the ace-1 resistance allele was low. Biochemical tests showed overexpression of oxidase, esterase and GST activity compared with the susceptible Kisumu strain. Conclusion: Anopheles gambiae s.l showed high resistance to the pyrethroids used and absolute sensitivity to PBO + pyrethroid synergists and chlorfenapyr. In addition, metabolic resistance and Kdr L1014F allele frequency

References

[1]  WHO (2024) Regional Data and Trends: World Malaria Report 2023. Official Web site of the World Health Organization (WHO).
https://www.who.int/publications-detail-redirect/9789240086173
[2]  (2023) Annuaire Statistiques, 2021.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire%20statistiques%202021%20MS_VF.pdf
[3]  Ossè, R.A., Tokponnon, F., Padonou, G.G., Glitho, M.E., Sidick, A., Fassinou, A., et al. (2023) Evidence of Transmission of Plasmodium vivax 210 and Plasmodium Vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa. Insects, 14, Article 231.
https://doi.org/10.3390/insects14030231
[4]  Zaim, M. and Guillet, P. (2002) Alternative Insecticides: An Urgent Need. Trends in Parasitology, 18, 161-163.
https://doi.org/10.1016/s1471-4922(01)02220-6
[5]  World Health Organization (2019) World Malaria Report 2018. World Health Organization.
https://www.who.int/publications/i/item/9789241565721
[6]  Accrombessi, M., Cook, J., Dangbenon, E., Yovogan, B., Akpovi, H., Sovi, A., et al. (2023) Efficacy of Pyriproxyfen-Pyrethroid Long-Lasting Insecticidal Nets (LLINs) and Chlorfenapyr-Pyrethroid LLINs Compared with Pyrethroid-Only LLINs for Malaria Control in Benin: A Cluster-Randomised, Superiority Trial. The Lancet, 401, 435-446.
https://doi.org/10.1016/s0140-6736(22)02319-4
[7]  Ngufor, C., Fongnikin, A., Hobbs, N., Gbegbo, M., Kiki, L., Odjo, A., et al. (2020) Indoor Spraying with Chlorfenapyr (A Pyrrole Insecticide) Provides Residual Control of Pyrethroid-Resistant Malaria Vectors in Southern Benin. Malaria Journal, 19, Article No. 249.
https://doi.org/10.1186/s12936-020-03325-2
[8]  Raghavendra, K., Barik, T.K., Sharma, P., Bhatt, R.M., Srivastava, H.C., Sreehari, U., et al. (2011) Chlorfenapyr: A New Insecticide with Novel Mode of Action Can Control Pyrethroid Resistant Malaria Vectors. Malaria Journal, 10, Article No. 16.
https://doi.org/10.1186/1475-2875-10-16
[9]  Zoungbédji, D.M., Padonou, G.G., Konkon, A.K., Hougbe, S., Sagbohan, H., Kpanou, C., et al. (2023) Assessing the Susceptibility and Efficacy of Traditional Neurotoxic (Pyrethroid) and New-Generation Insecticides (Chlorfenapyr, Clothianidin, and Pyriproxyfen), on Wild Pyrethroid-Resistant Populations of Anopheles gambiae from Southern Benin. Malaria Journal, 22, Article No. 245.
https://doi.org/10.1186/s12936-023-04664-6
[10]  Yovogan, B., Sovi, A., Padonou, G.G., Adoha, C.J., Akinro, B., Chitou, S., et al. (2021) Pre-Intervention Characteristics of the Mosquito Species in Benin in Preparation for a Randomized Controlled Trial Assessing the Efficacy of Dual Active-Ingredient Long-Lasting Insecticidal Nets for Controlling Insecticide-Resistant Malaria Vectors. PLOS ONE, 16, e0251742.
https://doi.org/10.1371/journal.pone.0251742
[11]  Kpanou, C.D., Sagbohan, H.W., Sovi, A., Osse, R., Padonou, G.G., Salako, A., et al. (2022) Assessing Insecticide Susceptibility and Resistance Intensity of Anopheles gambiae s.l. Populations from Some Districts of Benin Republic, West Africa. Journal of Medical Entomology, 59, 949-956.
https://doi.org/10.1093/jme/tjac037
[12]  World Health Organization (2017) Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaira RDTs: Round 7 (2016-2017).
https://iris.who.int/handle/10665/255836
[13]  Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z. and della Torre, A. (2008) Insertion Polymorphisms of SINE200 Retrotransposons within Speciation Islands of Anopheles gambiae Molecular Forms. Malaria Journal, 7, Article No. 163.
https://doi.org/10.1186/1475-2875-7-163
[14]  Wilkins, E.E., Howell, P.I. and Benedict, M.Q. (2006) IMP PCR Primers Detect Single Nucleotide Polymorphisms for Anopheles Gambiae Species Identification, Mopti and Savanna rDNA Types, and Resistance to Dieldrin in Anopheles arabiensis. Malaria Journal, 5, Article No. 125.
https://doi.org/10.1186/1475-2875-5-125
[15]  Martinez‐Torres, D., Chandre, F., Williamson, M.S., Darriet, F., Bergé, J.B., Devonshire, A.L., et al. (1998) Molecular Characterization of Pyrethroid Knockdown Resistance (KDR) in the Major Malaria Vector anopheles Gambiae S.S. Insect Molecular Biology, 7, 179-184.
https://doi.org/10.1046/j.1365-2583.1998.72062.x
[16]  Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., et al. (2004) The Unique Mutation in ace‐1 Giving High Insecticide Resistance Is Easily Detectable in Mosquito Vectors. Insect Molecular Biology, 13, 1-7.
https://doi.org/10.1111/j.1365-2583.2004.00452.x
[17]  Hemingway and Karunaratne (1998) Mosquito Carboxylesterases: A Review of the Molecular Biology and Biochemistry of a Major Insecticide Resistance Mechanism. Medical and Veterinary Entomology, 12, 1-12.
https://doi.org/10.1046/j.1365-2915.1998.00082.x
[18]  Sagbohan, H.W., Kpanou, C.D., Osse, R., Dagnon, F., Padonou, G.G., Sominahouin, A.A., et al. (2021) Intensity and Mechanisms of Deltamethrin and Permethrin Resistance in Anopheles gambiae s.l. Populations in Southern Benin. Parasites & Vectors, 14, Article No. 202.
https://doi.org/10.1186/s13071-021-04699-1
[19]  Ngufor, C., N’Guessan, R., Fagbohoun, J., Subramaniam, K., Odjo, A., Fongnikin, A., et al. (2015) Insecticide Resistance Profile of Anopheles gambiae from a Phase II Field Station in Cové, Southern Benin: Implications for the Evaluation of Novel Vector Control Products. Malaria Journal, 14, Article No. 464.
https://doi.org/10.1186/s12936-015-0981-z
[20]  Aïzoun, N., Aïkpon, R., Padonou, G.G., Oussou, O., Oké-Agbo, F., Gnanguenon, V., et al. (2013) Mixed-Function Oxidases and Esterases Associated with Permethrin, Deltamethrin and Bendiocarb Resistance in Anopheles gambiae s.l. in the South-North Transect Benin, West Africa. Parasites & Vectors, 6, Article No. 223.
https://doi.org/10.1186/1756-3305-6-223
[21]  Kouassi, B.L., Edi, C., Tia, E., Konan, L.Y., Akré, M.A., Koffi, A.A., et al. (2020) Susceptibility of Anopheles gambiae from Côte d’ivoire to Insecticides Used on Insecticide-Treated Nets: Evaluating the Additional Entomological Impact of Piperonyl Butoxide and Chlorfenapyr. Malaria Journal, 19, Article No. 454.
https://doi.org/10.1186/s12936-020-03523-y
[22]  Apetogbo, Y., Ahadji-Dabla, K.M., Soma, D.D., Amoudji, A.D., Koffi, E., Akagankou, K.I., et al. (2022) Insecticide Resistance Intensity and Efficacy of Synergists with Pyrethroids in Anopheles gambiae (Diptera: Culicidae) from Southern Togo. Malaria Journal, 21, Article No. 353.
https://doi.org/10.1186/s12936-022-04377-2
[23]  Oumbouke, W.A., Rowland, M., Koffi, A.A., Alou, L.P.A., Camara, S. and N’Guessan, R. (2019) Evaluation of an Alpha-Cypermethrin + PBO Mixture Long-Lasting Insecticidal Net VEERALIN® LN against Pyrethroid Resistant Anopheles gambiae s.s.: An Experimental Hut Trial in M’bé, Central Côte d’ivoire. Parasites & Vectors, 12, Article No. 544.
https://doi.org/10.1186/s13071-019-3796-x
[24]  Oxborough, R.M., Seyoum, A., Yihdego, Y., Chabi, J., Wat’senga, F., Agossa, F.R., et al. (2021) Determination of the Discriminating Concentration of Chlorfenapyr (Pyrrole) and Anopheles gambiae Sensu Lato Susceptibility Testing in Preparation for Distribution of Interceptor® G2 Insecticide-Treated Nets. Malaria Journal, 20, Article No. 316.
https://doi.org/10.1186/s12936-021-03847-3
[25]  Tchouakui, M., Assatse, T., Tazokong, H.R., Oruni, A., Menze, B.D., Nguiffo-Nguete, D., et al. (2023) Detection of a Reduced Susceptibility to Chlorfenapyr in the Malaria Vector Anopheles gambiae Contrasts with Full Susceptibility in Anopheles Funestus across Africa. Scientific Reports, 13, Article No. 2363.
https://doi.org/10.1038/s41598-023-29605-w
[26]  Djègbè, I., Boussari, O., Sidick, A., Martin, T., Ranson, H., Chandre, F., et al. (2011) Dynamics of Insecticide Resistance in Malaria Vectors in Benin: First Evidence of the Presence of L1014S Kdr Mutation in Anopheles gambiae from West Africa. Malaria Journal, 10, Article No. 261.
https://doi.org/10.1186/1475-2875-10-261
[27]  Tokponnon, T.F., Ossè, R., Padonou, G.G., Affoukou, C.D., Sidick, A., Sewade, W., et al. (2023) Entomological Characteristics of Malaria Transmission across Benin: An Essential Element for Improved Deployment of Vector Control Interventions. Insects, 14, Article 52.
https://doi.org/10.3390/insects14010052
[28]  Gnanguenon, V., Agossa, F.R., Badirou, K., Govoetchan, R., Anagonou, R., Oke-Agbo, F., et al. (2015) Malaria Vectors Resistance to Insecticides in Benin: Current Trends and Mechanisms Involved. Parasites & Vectors, 8, Article No. 223.
https://doi.org/10.1186/s13071-015-0833-2
[29]  Amoudji, A.D., Ahadji-Dabla, K.M., Hien, A.S., Apétogbo, Y.G., Yaméogo, B., Soma, D.D., et al. (2019) Insecticide Resistance Profiles of Anopheles gambiae s.l. in Togo and Genetic Mechanisms Involved, during 3-Year Survey: Is There Any Need for Resistance Management? Malaria Journal, 18, Article No. 177.
https://doi.org/10.1186/s12936-019-2813-z
[30]  Djègbè, I., Toponon, F., Gbankoto, A., Tchigossou, G., Djossou-Hessou, D., Dossou, C., et al. (2019) Typologie des gîtes larvaires et résistance des vecteurs du paludisme a la deltaméthrine dans les milieux urbain et rural du département de l’atlantique au sud du bénin: Données préliminaires. European Scientific Journal ESJ, 15, 171-191.
https://doi.org/10.19044/esj.2019.v15n33p171
[31]  Agossa, F.R., Aikpon, R., Azondekon, R., Govoetchan, R., Padonou, G.G., Oussou, O., et al. (2014) Efficacy of Various Insecticides Recommended for Indoor Residual Spraying: Pirimiphos Methyl, Potential Alternative to Bendiocarb for Pyrethroid Resistance Management in Benin, West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108, 84-91.
https://doi.org/10.1093/trstmh/trt117
[32]  Salako, A.S., Ahogni, I., Aïkpon, R., Sidick, A., Dagnon, F., Sovi, A., et al. (2018) Insecticide Resistance Status, Frequency of L1014F Kdr and G119S Ace-1 Mutations, and Expression of Detoxification Enzymes in Anopheles gambiae (s.l.) in Two Regions of Northern Benin in Preparation for Indoor Residual Spraying. Parasites & Vectors, 11, Article No. 618.
https://doi.org/10.1186/s13071-018-3180-2
[33]  Kpanou, C.D., Sagbohan, H.W., Dagnon, F., Padonou, G.G., Ossè, R., Salako, A.S., et al. (2021) Characterization of Resistance Profile (Intensity and Mechanisms) of Anopheles gambiae in Three Communes of Northern Benin, West Africa. Malaria Journal, 20, Article No. 328.
https://doi.org/10.1186/s12936-021-03856-2
[34]  Anges, Y., Jean-Robert, K., Christophe, C., Ramziyath, A., Carine, T., Achaz, A., et al. (2018) Sensibilité des populations d’ aedes aegypti vis-à-vis des organochlorés, pyréthrinoïdes et des carbamates dans la commune de Natitingou au nord-est du bénin. European Scientific Journal, ESJ, 14, 134-142.
https://doi.org/10.19044/esj.2018.v14n33p134

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133