In West Africa, drinking water supply relies on the hard-rock aquifers. In Ivory Coast, the population growth along with the climate changes make drinking water resources highly vulnerable. Hard-rock aquifers, which occur within the weathered and fractured zones, are important groundwater resources in tropical region. These aquifers complexity, the lack of exhaustive studies lead to bad boreholes points siting. Geophysical investigations are used to obtain information about the crystalline basement rocks, which relates to the occurrence of groundwater. In Tonkpi region (western C?te d’Ivoire) is located such aquifer, poorly known, both in its reservoir’s geometry and in the hydrogeological potential of the reserves it contains. This work deals with combining resistivity profiling, vertical electrical sounding with surface 2D geoelectrical resistivity mapping to characterize the ground and aquifers in a crystalline basement complex area of the Tonkpi region. Results allow to precise the local thicknesses of the 3 main units of our study area down to 50 m, being from top to down, saprolite, fissured-rock zone and rock substratum. The study shows that Schlumberger and Wenner alpha arrays for vertical electrical soundings integrated with the resistivity profiling imaging is efficient and enhances the aquifer characterization in basement complex terrain.
References
[1]
Lachassagne, P., Dewandel, B. and Wyns, R. (2021) Review: Hydrogeology of Weathered Crystalline/Hard-Rock Aquifers—Guidelines for the Operational Survey and Management of Their Groundwater Resources. Hydrogeology Journal, 29, 2561-2594. https://doi.org/10.1007/s10040-021-02339-7
[2]
Lachassagne, P., Wyns, R. and Dewandel, B. (2011) The Fracture Permeability of Hard Rock Aquifers Is Due Neither to Tectonics, Nor to Unloading, but to Weathering Processes. Terra Nova, 23, 145-161. https://doi.org/10.1111/j.1365-3121.2011.00998.x
[3]
Aoulou, K.A., Pistre, S., Oga, Y.M.S., Dewandel, B. and Lachassagne, P. (2021) Improving the Methods for Processing Hard Rock Aquifers Boreholes’ Databases. Application to the Hydrodynamic Characterization of Metamorphic Aquifers from Western Côte d’Ivoire. Water, 13, Article 3219. https://doi.org/10.3390/w13223219
[4]
MINHAS (2024) Projet de réalisation de systèmes d’alimentation en eau potable dans 111 localités de Côte d’Ivoire. BRGM, Côte d’Ivoire.
[5]
Lasm, T. and Razack, M. (2001) Lois d’échelle dans la fracturation de roches dures cristallines et dans le réseau hydrographique associé. ComptesRendus de l’Académiedes Sciences—Series IIA Earth and Planetary Science, 333, 225-232. https://doi.org/10.1016/s1251-8050(01)01632-9
[6]
Saley, M.B. (2003) Système d’informations hydrogéologiques à référence spatiale, discontinuités pseudo-images et cartographies thématiques des ressources en eau de la région semi-montagneuse de Man (Ouest de la Côte d’Ivoire). Abidjan, Côte d’Ivoire: Thèse de Doctorat de l’Université de Cocody.
[7]
Lasm, T., Kouame, F., Oga, M.S., Jourda, J.R.P., Soro, N. and Kouadio, H.B. (2004) Etude de la productivité des réservoirs fracturés des zones de socle. Cas du noyau archéen de Man-Danané (Ouest de la Côte d’Ivoire). Revue Ivoirienne des Sciences et Technologie, 5, 97-115.
[8]
Kouamé, K.F., Lasm, T., De Dreuzy, J.R., Akaffou, A.G., Bour, O. and Davy, P. (2010) Contribution d’un modèle hydrogéologique à fractures discrètes à l’étude des aquifères fracturés du socle Archéen de Touba (Nord-Ouest, Côte d’Ivoire). Revue des sciences de l’eau, 23, 41-56. https://doi.org/10.7202/038924ar
[9]
Lasm, T. (2000) Hydrogéologie des réservoirs fracturés de socle: Analyses statistique et géostatistique de la fracturation et des propriétés hydrauliques; application à la région des montagnes de Côte d’Ivoire (domaine archéen). Thèse de Doctorat de l’Université de Poitiers.
[10]
Razack, M. and Lasm, T. (2006) Geostatistical Estimation of the Transmissivity in a Highly Fractured Metamorphic and Crystalline Aquifer (Man-Danane Region, Western Ivory Coast). Journal of Hydrology, 325, 164-178. https://doi.org/10.1016/j.jhydrol.2005.10.014
[11]
Baka, D., Kouadio, K.E., Yao, K.T. and Takpa, T.P. (2021) Potentiel de productivité des aquifères de la région de Man (Côte d’Ivoire) par analyse spatiale et krigeage. Environmental and Water Sciences, Public Health and Territorial Intelligence Journal, 5, Article 597.
[12]
Yao, J. (2021) Fonctionnement hydrodynamique des aquifères fissurés du département de Man (Ouest de la Côte d’Ivoire). Mémoire Daloa, Côte d’Ivoire: Master de l’Uni-versité Jean Lorougnon Guede.
[13]
Soro, D.D., Koïta, M., Biaou, C.A., Outoumbe, E., Vouillamoz, J., Yacouba, H., et al. (2017) Geophysical Demonstration of the Absence of Correlation between Lineaments and Hydrogeologically Usefull Fractures: Case Study of the Sanon Hard Rock Aquifer (Central Northern Burkina Faso). Journal of African Earth Sciences, 129, 842-852. https://doi.org/10.1016/j.jafrearsci.2017.02.025
[14]
Alle, I.C., Descloitres, M., Vouillamoz, J., Yalo, N., Lawson, F.M.A. and Adihou, A.C. (2018) Why 1D Electrical Resistivity Techniques Can Result in Inaccurate Siting of Boreholes in Hard Rock Aquifers and Why Electrical Resistivity Tomography Must Be Preferred: The Example of Benin, West Africa. Journal of African Earth Sciences, 139, 341-353. https://doi.org/10.1016/j.jafrearsci.2017.12.007
[15]
Ouedraogo, M., Pessel, M., Durand, V., Saintenoy, A., Kamagate, B. and Savane, I. (2022) Multifrequency Electromagnetic Method for the Hydrogeophysical Characterization of Hard-Rock Aquifers: The Case of the Upstream Watershed of White Bandama (Northern Ivory Coast). Earth Sciences Bulletin, 193, 11. https://doi.org/10.1051/bsgf/2022009
[16]
Nouradine, H., Schamper, C., Valdes, D., Moussa, I., Ramel, D. and Plagnes, V. (2024) Integrating Geological, Hydrogeological and Geophysical Data to Identify Groundwater Resources in Granitic Basement Areas (Guéra Massif, Chad). Hydrogeology Journal, 32, 759-784. https://doi.org/10.1007/s10040-024-02766-2
[17]
Guerin, R. (2005) Borehole and Surface-Based Hydrogeophysics. Hydrogeology Journal, 13, 251-254. https://doi.org/10.1007/s10040-004-0415-4
[18]
Kouamelan, A.-N. (1996) Géochronologie et Géochimie des Formations Archéennes et Protérozoïques de la Dorsale de Man en Côte d’Ivoire. Implications pour la Transi-tion Archéen-Protéozoïque. Thèse de Doctorat de l’Université de Renne.
[19]
Kouamelan, A.N., Djro, S.C., Allialy, M.E., Paquette, J. and Peucat, J. (2015) The Oldest Rock of Ivory Coast. Journal of African Earth Sciences, 103, 65-70. https://doi.org/10.1016/j.jafrearsci.2014.12.004
[20]
Reynolds, J.M. (1991) The Need for Recognized Standards of Applied Geophysical Software and the Geophysical Education of Software Users. Computers & Geosciences, 17, 1099-1104. https://doi.org/10.1016/0098-3004(91)90071-k
[21]
Günther, T. and Rücker, C. (2015) Boundless Electrical Resistivity Tomography BERT 2—The User Tutorial.
[22]
Niculescu, B.M. and Andrei, G. (2019) Using Vertical Electrical Soundings to Characterize Seawater Intrusions in the Southern Area of Romanian Black Sea Coastline. Acta Geophysica, 67, 1845-1863. https://doi.org/10.1007/s11600-019-00341-y
[23]
Day-Lewis, F.D., Slater, L.D., Robinson, J., Johnson, C.D., Terry, N. and Werkema, D. (2017) An Overview of Geophysical Technologies Appropriate for Characterization and Monitoring at Fractured-Rock Sites. Journal of Environmental Management, 204, 709-720. https://doi.org/10.1016/j.jenvman.2017.04.033
[24]
Terry, N., Day-Lewis, F.D., Robinson, J.L., Slater, L.D., Halford, K., Binley, A., et al. (2017) Scenario Evaluator for Electrical Resistivity Survey Pre-Modeling Tool. Groundwater, 55, 885-890. https://doi.org/10.1111/gwat.12522
[25]
Dieng, B., Kouassi, A.H. and Bakyono, B.A. (2004) Optimisation de l’implantation géophysique des forages en zone de socle au Nord du Burkina Faso. Sud Sciences Technologie, 12, Article 21.
[26]
Coulibaly, A., Lasme, O.Z.D., Youan, T.M., Soro, G., Lasm, T. and Soro, N. (2019) Multidisciplinary Approach for a Basement Aquifer Location in Tanda Region, C & ocirc; te d’Ivoire. Journal of Water Resource and Protection, 11, 1111-1128. https://doi.org/10.4236/jwarp.2019.119065
[27]
Kouakou, K.E.G., Sombo, B.C., Digbéhi, Z.B., Kouassi, F.W., Sombo, P. and Kouamé, N. (2012) Utilisation de la prospection géophysique par résistivité électrique pour la recherche d’eau souterraine dans le département de Tanda (Est de la Côte d’Ivoire). European Journal of Scientific Research, 83, Article 230.
[28]
Sombo, A.P., Kouakou, K.É.G., Eblin, S.G. and Sombo, B.C. (2019) Caractérisation hydrogéologique, par télédétection et géophysique d’accidents régionaux en zone de socle: cas de Sikensi-Tiassalé, Côte d’Ivoire. Afrique Science, 15, Article 313.
[29]
Koita, M., Yonli, H.F. and Nikiema, D.G.C. (2016) Optimizing the Interpretation of Sub-Surface Resistivity in Relation with Borehole Productivity in Basement Area Applied to Seno Province (Burkina Faso). Journal of Environmental Science and Engineering B, 5, 563-580.
[30]
Kouadio, K.J.O., Mangoi, O.M.J., Koffi, B., Soro, D.D., Dibi, B. and Kouassi, K.L. (2024) Identification of Hydrogeological and Geoelectrical Parameters Influencing the Productivity of Boreholes in the Commune of Daloa (Central-Western of Côte d’Ivoire). Heliyon, 10, e29468.
[31]
Kouame, B.K., Douagui, G.A., Kouamé, K.I., Yeo, W.E. and Savane, I. (2019) Borehole Productivity Controlling Factors in Crystalline Bedrock Aquifer of Gkêkê Region, Center of Côte d’Ivoire. Journal of Water Resource and Protection, 11, 728-739. https://doi.org/10.4236/jwarp.2019.116043
[32]
Krivochieva, S. and Chouteau, M. (2003) Integrating TDEM and MT Methods for Characterization and Delineation of the Santa Catarina Aquifer (Chalco Sub-Basin, Mexico). Journal of Applied Geophysics, 52, 23-43. https://doi.org/10.1016/s0926-9851(02)00231-8
[33]
Wyns, R., Baltassat, J., Lachassagne, P., Legchenko, A., Vairon, J. and Mathieu, F. (2004) Application of Proton Magnetic Resonance Soundings to Groundwater Reserve Mapping in Weathered Basement Rocks (Brittany, France). Bulletin de la Société Géologique de France, 175, 21-34. https://doi.org/10.2113/175.1.21