全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating Aboveground Carbon Stock and Sequestration Potential of Oak-Gum-Cypress Forests on Bottomland Hardwood Sites

DOI: 10.4236/ojf.2025.153012, PP. 210-225

Keywords: Biomass, Growth and Yield, Timberland, US South

Full-Text   Cite this paper   Add to My Lib

Abstract:

An aboveground, whole stand, carbon stock model was constructed for the bottomland hardwood (BLH) oak-gum-cypress forests along the US Gulf Coast and lower Mississippi River Delta region, and the sequestration potential was explored utilizing USDA Forest Service Forest Inventory and Analysis (FIA) plot, condition, and tree data. Carbon stock model predictors were site index, stand age, and basal area. Sequestration was based on basal area increment. Stand age averaged 56.5 years, with 67.4 tonnes/ha of carbon stock on BLH sites on sweetgum site index 21.8 sites. At the 2020 social cost of carbon ($190 per tonne CO2e) and a discount rate of 2.00%, the accumulated present value of carbon ranged from $6500 per hectare over 5 years to $28,100 per hectare over 35 years. Accumulated present values discounted at 5.00% using potential market prices ranging from $1.00 to $50 per ton CO2e varied from $31.40 per hectare for 5 years to $5000 per hectare for 35 years. Findings suggest a revenue stream on BLH sites competitive with other forest-based cash flows.

References

[1]  Barrett, S. (1998). Political Economy of the Kyoto Protocol. Oxford Review of Economic Policy, 14, 20-39.
https://doi.org/10.1093/oxrep/14.4.20
[2]  Baskerville, G. L. (1972). Use of Logarithmic Regression in the Estimation of Plant Biomass. Canadian Journal of Forest Research, 2, 49-53.
https://doi.org/10.1139/x72-009
[3]  Birdsey, R. A. (1992). Carbon Storage and Accumulation in United States Forest Ecosystems. Gen. Tech. Rep. WO-59, US Department of Agriculture Forest Service, Northeastern Forest Experiment Station.
https://doi.org/10.5962/bhl.title.94267
[4]  Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: A Primer (Vol. 134). Food and Agriculture Organization.
[5]  Buckman, R. E. (1962). Growth and Yield of Red Pine in Minnesota. Tech. Bull. No. 1272, US Department of Agriculture Forest Service, Lake States Forest Experiment Station.
[6]  Carmean, W. H., Hahn, J. T., & Jacobs, R. D. (1989). Site Index Curves for Forest Tree Species in the Eastern United States. Gen. Tech. Rep. NC-128, US Department of Agriculture Forest Service, North Central Forest Experiment Station.
[7]  Chave, J., Chust, G., Condit, R., Aguilar, S., Hernandez, A., Lao, S. et al. (2007). Error Propagation and Scaling for Tropical Forest Biomass Estimates. In Y. Malhi, & O. Phillips (Eds.), Tropical Forests and Global Atmospheric Change (pp. 155-164). Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780198567066.003.0013
[8]  Cushing, T. L., & Newman, D. (2018). Analysis of Relative Tax Burden on Nonindustrial Private Forest Landowners in the Southeastern United States. Journal of Forestry, 116, 228-235.
https://doi.org/10.1093/jofore/fvx013
[9]  Dixon, G. E. (2002). Essential FVS: A User’s Guide to the Forest Vegetation Simulator. In-ternal Rep., US Department of Agriculture Forest Service, Forest Management Service Center.
[10]  Durkeay, J., & Schultz, J. (2016). The Role of Forests in Carbon Sequestration and Storage. In National Conference of State Legislatures (2 p). National Conference of State Legislatures.
[11]  Forest Landowners Association (2024). Costs and Trends of Southern Forestry Practices.
https://forestlandowners.com/cost-and-trends-of-southern-forestry-practices/
[12]  Galik, C. S., Murray, B. C., & Mercer, D. E. (2013). Where Is the Carbon? Carbon Sequestration Potential from Private Forestland in the Southern United States. Journal of Forestry, 111, 17-25.
https://doi.org/10.5849/jof.12-055
[13]  Gans, W., & Hintermann, B. (2013). Market Effects of Voluntary Climate Action by Firms: Evidence from the Chicago Climate Exchange. Environmental and Resource Economics, 55, 291-308.
https://doi.org/10.1007/s10640-012-9626-7
[14]  Goelz, J. C. G. (1995). A Stocking Guide for Southern Bottomland Hardwoods. Southern Journal of Applied Forestry, 19, 103-104.
https://doi.org/10.1093/sjaf/19.3.103
[15]  Gonçalves, D. R. P., Mishra, U., Wills, S., & Gautam, S. (2021). Regional Environmental Controllers Influence Continental Scale Soil Carbon Stocks and Future Carbon Dynamics. Scientific Reports, 11, Article No. 6474.
https://doi.org/10.1038/s41598-021-85992-y
[16]  Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A. et al. (2017). Natural Climate Solutions. Proceedings of the National Academy of Sciences, 114, 11645-11650.
https://doi.org/10.1073/pnas.1710465114
[17]  Han, F. X., Plodinec, M. J., Su, Y., Monts, D. L., & Li, Z. (2007). Terrestrial Carbon Pools in Southeast and South-Central United States. Climatic Change, 84, 191-202.
https://doi.org/10.1007/s10584-007-9244-5
[18]  Hendrickson, O. (2003). Influences of Global Change on Carbon Sequestration by Agricultural and Forest Soils. Environmental Reviews, 11, 161-192.
https://doi.org/10.1139/a04-001
[19]  Hoover, K., & Riddle, A. A. (2022). U.S. Forest Carbon Data: In Brief. Congressional Re-search Service.
https://crsreports.congress.gov
[20]  Huang, C., Kronrad, G. D., & Cheng, S. D. (2003). Economic Analysis of Sequestering Carbon in Green Ash Forests in the Lower Mississippi River Valley. The Scientific World Journal, 3, 731-740.
https://doi.org/10.1100/tsw.2003.61
[21]  Hussain, A., Munn, I. A., Brashier, J., Jones, W. D., & Henderson, J. E. (2013). Capitalization of Hunting Lease Income into Northern Mississippi Forestland Values. Land Economics, 89, 137-153.
https://doi.org/10.3368/le.89.1.137
[22]  Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-Scale Biomass Estimators for United States Tree Species. Forest Science, 49, 12-35.
https://doi.org/10.1093/forestscience/49.1.12
[23]  Johnsen, K. H., Keyser, T. L., Butnor, J. R., Gonzalez-Benecke, C. A., Kaczmarek, D. J., Maier, C. A., McCarthy, H., & Sun, G. (2013). Productivity and Carbon Sequestration of Forests in the Southern United States. In Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems (pp. 193-248). CRC Press.
[24]  Keeton, W. S., Whitman, A. A., McGee, G. C., & Goodale, C. L. (2011). Late-Successional Biomass Development in Northern Hardwood-Conifer Forests of the Northeastern United States. Forest Science, 57, 489-505.
https://doi.org/10.1093/forestscience/57.6.489
[25]  King, S. L., Twedt, D. J., & Wilson, R. R. (2006). The Role of the Wetland Reserve Program in Conservation Efforts in the Mississippi River Alluvial Valley. Wildlife Society Bulletin, 34, 914-920.
https://doi.org/10.2193/0091-7648(2006)34[914:trotwr]2.0.co;2
[26]  Lundgren, A. L. (1966). Estimating Investment Returns from Growing Red Pine. Res. Pap. NC-2, US Department of Agriculture Forest Service, North Central Forest Experiment Station.
[27]  Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A. et al. (2018). Global Importance of Large-Diameter Trees. Global Ecology and Biogeography, 27, 849-864.
https://doi.org/10.1111/geb.12747
[28]  Malmsheimer, R. W., Heffernan, P., Brink, S., Crandall, D., Deneke, F., Galik, C. et al. (2008). Forest Management Solutions for Mitigating Climate Change in the United States. Journal of Forestry, 106, 115-117.
https://doi.org/10.1093/jof/106.3.115
[29]  McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S. et al. (2011). A Synthesis of Current Knowledge on Forests and Carbon Storage in the United States. Ecological Applications, 21, 1902-1924.
https://doi.org/10.1890/10-0697.1
[30]  Melson, S. L., Harmon, M. E., Fried, J. S., & Domingo, J. B. (2011). Estimates of Live-Tree Carbon Stores in the Pacific Northwest Are Sensitive to Model Selection. Carbon Balance and Management, 6, 1-16.
https://doi.org/10.1186/1750-0680-6-2
[31]  Moerschbaecher, M. K., Keim, R. F., & Day, J. W. (2016). Estimating Carbon Stocks in Uneven-Aged Bottomland Hardwood Forest Stands in South Louisiana. In Proceedings of the 18th Biennial Southern Silvicultural Research Conference. E-Gen. Tech. Rep. SRS-212 (Vol. 212, pp. 589-595). US Department of Agriculture, Forest Service, Southern Re-search Station.
[32]  Reinikainen, M., D’Amato, A. W., Bradford, J. B., & Fraver, S. (2014). Influence of Stocking, Site Quality, Stand Age, Low-Severity Canopy Disturbance, and Forest Composition on Sub-Boreal Aspen Mixedwood Carbon Stocks. Canadian Journal of Forest Research, 44, 230-242.
https://doi.org/10.1139/cjfr-2013-0165
[33]  Ribera, L., Zenteno, J., & McCarl, B. (2009). Carbon Markets: A Potential Source of Income for Farmers and Ranchers. Texas A&M Agrilife Extension.
https://agrilifeextension.tamu.edu/asset-external/carbon-markets-a-potential-source-of-income-for-farmers-and-ranchers/
[34]  Schultz, E. B., Iles, J. C., Matney, T. G., Ezell, A. W., Meadows, J. S., Leininger, T. D. et al. (2010). Stand-Level Growth and Yield Component Models for Red Oak-Sweetgum Forests on Mid-South Minor Stream Bottoms. Southern Journal of Applied Forestry, 34, 161-175.
https://doi.org/10.1093/sjaf/34.4.161
[35]  Schultz, E. B., Matney, T. G., & Grebner, D. L. (2013). A Tree Biomass and Carbon Estimation System. In J. M. Guldin (Ed.), Proceedings of the 15th Biennial Southern Silvicultural Research Conference. E-Gen. Tech. Rep. SRS-GTR-175 (Vol. 175, pp. 317-324). US Department of Agriculture, Forest Service, Southern Research Station.
[36]  Sedjo, R. A., & Marland, G. (2003). Inter-Trading Permanent Emissions Credits and Rented Temporary Carbon Emissions Offsets: Some Issues and Alternatives. Climate Policy, 3, 435-444.
https://doi.org/10.1016/s1469-3062(03)00051-2
[37]  Shaw, J. D. (2009). Using FIA Data in the Forest Vegetation Simulator. In W. McWilliams, G. Moisen, & R. Czaplewski (Eds.), Forest Inventory and Analysis (FIA) Symposium (Vol. 56, 16 p., pp. 1-16). US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
[38]  Shaw, J. D., & Long, J. N. (2007). A Density Management Diagram for Longleaf Pine Stands with Application to Red-Cockaded Woodpecker Habitat. Southern Journal of Applied Forestry, 31, 28-38.
https://doi.org/10.1093/sjaf/31.1.28
[39]  Shoch, D. T., Kaster, G., Hohl, A., & Souter, R. (2009). Carbon Storage of Bottomland Hardwood Afforestation in the Lower Mississippi Valley, USA. Wetlands, 29, 535-542.
https://doi.org/10.1672/08-110.1
[40]  Smith, H. D., Hafley, W. L., Holley, D. L., & Kellison, R. C. (1975). Yields of Mixed Hardwood Stands Occurring Naturally on a Variety of Sites in the Southern United States. Technical Report, School of Forest Resources, North Carolina State University.
[41]  Smith, J. E., Heath, L. S., Skog, K. E., & Birdsey, R. A. (2006). Methods for Calculating Forest Ecosystem and Harvested Carbon with Standard Estimates for Forest Types of the United States. Gen. Tech. Rep. NE-343, U.S. Department of Agriculture Forest Service, Northeastern Research Station.
[42]  Spurlock, S. R., Munn, I. A., & Henderson, J. E. (2018). Procedures Used to Calculate Property Taxes for Agricultural Land in Mississippi. Mississippi State University Mississippi Agricultural and Forestry Experiment Station Information Sheet Np. 1350.
[43]  Sullivan, A. D., Matney, T. G., & Hodges, J. D. (1983). Variable Density Yield Tables for Red Oak-Sweetgum Stands. In Proceedings of the 2nd Biennial Southern Silvicultural Research Conference (Vol. 24, pp. 298-301). US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.
[44]  Tanger, S., & Norman, C. (2022). Forest Carbon Credit Programs in Mississippi. Natural Capital Exchange. Mississippi State University Extension Publication 3738.
[45]  United States Department of Agriculture Soil Conservation Service (1961). Land Capability classification. U.S. Department of Agriculture Handbook 210.
http://www.nrcs.usda.gov/Internet/fse_documents/nrcs142p2_052290.pdf
[46]  United States Environmental Protection Agency (2017). Level III and IV Ecoregions of the Continental United States.
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
[47]  US Environmental Protection Agency (2023). EPA Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances. Docket ID No. EPA-HQ-OAR-2021-0317. 170 p.
[48]  van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating Carbon Stock in Secondary Forests: Decisions and Uncertainties Associated with Allometric Biomass Models. Forest Ecology and Management, 262, 1648-1657.
https://doi.org/10.1016/j.foreco.2011.07.018
[49]  Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N. et al. (2012). A Universal Approach to Estimate Biomass and Carbon Stock in Tropical Forests Using Generic Allometric Models. Ecological Applications, 22, 572-583.
https://doi.org/10.1890/11-0039.1
[50]  Walters, D. K., & Ek, A. R. (1993). Whole Stand Yield and Density Equations for Fourteen Forest Types in Minnesota. Northern Journal of Applied Forestry, 10, 75-85.
https://doi.org/10.1093/njaf/10.2.75
[51]  Wharton, C. H., Kitchen, W. M., Pendleton, E. C., & Sipe, T. W. (1982). Ecology of Bottomland Hardwood Swamps of the Southeast: A Community Profile. FWS. OBS-81/37, US Department of the Interior Fish and Wildlife Service, Biological Services Program.
[52]  Wigginton, J. D., Lockaby, B. G., & Trettin, C. C. (2000). Soil Organic Matter Formation and Sequestration across a Forested Floodplain Chronosequence. Ecological Engineering, 15, S141-S155.
https://doi.org/10.1016/s0925-8574(99)00080-4
[53]  Zianis, D., & Mencuccini, M. (2004). On Simplifying Allometric Analyses of Forest Biomass. Forest Ecology and Management, 187, 311-332.
https://doi.org/10.1016/j.foreco.2003.07.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133