全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Artificial Intelligence for Business Innovation: Revolutionizing Financial Analytics and Customer Modeling in Online Commerce

DOI: 10.4236/vp.2025.113028, PP. 393-411

Keywords: Artificial Intelligence, Customer Behavior Modeling, E-Commerce Innovation, Financial Analytics, Predictive Analytics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The incorporation of Artificial Intelligence (AI) in e-commerce is revolutionizing financial processes, customer interaction, and strategic decision-making. This study assessed the influence of AI-driven solutions across five principal dimensions illustrated in data visualizations. The usage of AI inside financial commerce (F-commerce) enterprises has markedly increased, escalating from 30% in 2018 to 76% in 2024, signifying a rapid acceptance of AI technology throughout the sector. A comparison of forecasting models indicates that AI-driven forecasting attains an impressive 90% accuracy rate, surpassing traditional approaches that obtain merely 52%, thus improving inventory management and revenue forecasts. The customer interaction data indicates that AI-driven recommendation systems constitute 35% of traffic, closely trailing direct searches at 40%, and significantly exceeding other sources at 10%, underscoring AI’s influence on personalized customer experiences and sales conversions. Industry studies indicated that data quality (40% of respondents), insufficient testing (28%), and a lack of diversity in training datasets (21%) are significant obstacles to AI adoption, highlighting essential areas for enhancement to guarantee ethical and impartial results. Trend research indicates a consistent increase in the utilization of both predictive and prescriptive analytics, with predictive analytics approaching 75% adoption and prescriptive approaches exceeding 60%, highlighting a transition towards proactive and optimal corporate tactics. Together, these findings underscored the transformative role of AI in improving forecasting precision, customer targeting, and operational efficiency in online commerce. The advantages such as diminished manual errors improved fraud detection, and heightened client retention rendering AI an essential instrument for the future E-commerce Innovation.

References

[1]  Alam, G. T., Chy, M. А. R., Rozario, E., Moniruzzaman, M., Hossain, S., Uddin, M. et al. (2025). AI-Driven Optimization of Domestic Timber Supply Chains to Enhance U.S. Economic Security. Journal of Posthumanism, 5, 1581-1605.
https://doi.org/10.63332/joph.v4i3.2083
[2]  Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R. et al. (2022). Autonomous Vehicles and Intelligent Automation: Applications, Challenges, and Opportunities. Mobile Information Systems, 2022, Article ID: 7632892.
https://doi.org/10.1155/2022/7632892
[3]  Bhardwaj, S., Sharma, N., Goel, M., Vandana, Sharma, K., & Verma, V. (2024). Enhancing Customer Targeting in E-Commerce and Digital Marketing through AI-Driven Personalization Strategies. In M. Ltifi (Ed.), Advances in Digital Marketing in the Era of Artificial Intelligence (pp. 41-60). CRC Press.
https://doi.org/10.1201/9781003450443-4
[4]  Bulbul, I. J., Zahir, Z., Ahmed, T., & Alam, P. (2018). Comparative Study of the Antimicrobial, Minimum Inhibitory Concentrations (MIC), Cytotoxic and Antioxidant Activity of Methanolic Extract of Different Parts of Phyllanthus acidus (L.) Skeels (Family: Euphorbiaceae). World Journal of Pharmacy and Pharmaceutical Sciences, 8, 12-57.
[5]  Capua, M. D., Ciaramella, A., & De Prisco, A. (2023). Machine Learning and Computer Vision for the Automation of Processes in Advanced Logistics: The Integrated Logistic Platform (ILP) 4.0. Procedia Computer Science, 217, 326-338.
https://doi.org/10.1016/j.procs.2022.12.228
[6]  Columbres, M. R. C., & Victoriano, J. M. (2024). Cloud Sustainability: An Analysis and Assessment of the Plateau Prediction of 2023 Gartner Hype Cycle for Emerging Technologies. International Journal of Sustainable Development and Planning, 19, 2881-2892.
https://doi.org/10.18280/ijsdp.190807
[7]  Das, K., Tanvir, A., Rani, S., & Aminuzzaman, F. M. (2025). Revolutionizing Agro-Food Waste Management: Real-Time Solutions through IoT and Big Data Integration. Voice of the Publisher, 11, 17-36.
https://doi.org/10.4236/vp.2025.111003
[8]  Farhad, M. A. (2024). Consumer Data Protection Laws and Their Impact on Business Models in the Tech Industry. Telecommunications Policy, 48, Article ID: 102836.
https://doi.org/10.1016/j.telpol.2024.102836
[9]  Fortune, P. (2024). Democratising Digital Advertising and E-Commerce in South Africa. Master’s Thesis, University of the Witwatersrand.
[10]  Haldar, U., Alam, G. T., Rahman, H., Miah, M. A., Chakraborty, P., Saimon, A. S. M. et al. (2025). AI-Driven Business Analytics for Economic Growth Leveraging Machine Learning and MIS for Data-Driven Decision-Making in the U.S. Economy. Journal of Posthumanism, 5, 932-957.
https://doi.org/10.63332/joph.v5i4.1178
[11]  Hashmi, M., Governatori, G., Lam, H., & Wynn, M. T. (2018). Are We Done with Business Process Compliance: State of the Art and Challenges Ahead. Knowledge and Information Systems, 57, 79-133.
https://doi.org/10.1007/s10115-017-1142-1
[12]  Hossain, D., & Alasa, D. K. (2024). Numerical Modeling of Fire Growth and Smoke Propagation in Enclosure. Journal of Management World, 2024, 186-196.
https://doi.org/10.53935/jomw.v2024i4.1051
[13]  Hossain, D., Asrafuzzaman, M., Dash, S., & Rani, S. (2024a). Multi-Scale Fire Dynamics Modeling: Integrating Predictive Algorithms for Synthetic Material Combustion in Compartment Fires. Journal of Management World, 2024, 363-374.
https://doi.org/10.53935/jomw.v2024i4.1133
[14]  Hossain, S., Bhuiyan, M. M. R., Islam, M. S., Moniruzzaman, M., Ahmed, M. K., Das, N. et al. (2024b). Big Data Analysis and Prediction of COVID-2019 Epidemic Using Machine Learning Models in Healthcare Sector. Journal of Ecohumanism, 3, 14468-14477.
https://doi.org/10.62754/joe.v3i8.6775
[15]  Hossain, S., Karim, F., Sultana, S., Uddin, M., Ahmed, M. K., Chy, M. А. R. et al. (2025). From Data to Value: Leveraging Business Analytics for Sustainable Management Practices. Journal of Posthumanism, 5, 82-105.
https://doi.org/10.63332/joph.v5i5.1309
[16]  Islam, M. S., Manik, M. M. T. G., Moniruzzaman, M., Saimon, A. S. M., Sultana, S., Bhuiyan, M. M. R. et al. (2025). Explainable AI in Healthcare: Leveraging Machine Learning and Knowledge Representation for Personalized Treatment Recommendations. Journal of Posthumanism, 5, 1541-1559.
https://doi.org/10.63332/joph.v5i1.1996
[17]  Javaid, H. A. (2024). AI-Driven Predictive Analytics in Finance: Transforming Risk Assessment and Decision-Making. Advances in Computer Sciences, 7, 1-9.
[18]  Khair, F. B., Ahmed, M. K., Hossain, S., Hossain, S., Gonee Manik, M. M. T., Rahman, R. et al. (2024). Sustainable Economic Growth through Data Analytics: The Impact of Business Analytics on U.S. Energy Markets and Green Initiatives. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 108-113). IEEE.
https://doi.org/10.1109/icpids65698.2024.00026
[19]  Kim, J., & Lee, H. (2022). Leveraging AI for Personalized Customer Experiences in Online Commerce: A Case Study Approach. Electronic Commerce Research and Applications, 54, Article ID: 101175.
[20]  Kuchipudi, R., Prathima, T., Palamakula, R. B., Murthy, T. S., & Rao, K. G. (2025). Private AI in E-Commerce: Safeguarding Consumer Data in the Digital Marketplace. In Sustainable Development Using Private AI (pp. 232-239). CRC Press.
[21]  Kumar, V., Dixit, A., Javalgi, R. G., & Dass, M. (2021). Digital Transformation and AI Adoption in Marketing and Sales: Opportunities and Challenges. Industrial Marketing Management, 95, 48-60.
https://doi.org/10.1016/j.indmarman.2021.03.008
[22]  Madanchian, M. (2024). The Impact of Artificial Intelligence Marketing on E-Commerce Sales. Systems, 12, Article No. 429.
https://doi.org/10.3390/systems12100429
[23]  Manik, M. M. T. G. (2021). Multi-Omics System Based on Predictive Analysis with AI-Driven Models for Parkinson’s Disease (PD) Neurosurgery. Journal of Medical and Health Studies, 2, 42-52.
https://doi.org/10.32996/jmhs.2021.2.1.5
[24]  Manik, M. M. T. G. (2022). An Analysis of Cervical Cancer Using the Application of AI and Machine Learning. Journal of Medical and Health Studies, 3, 67-76.
https://doi.org/10.32996/jmhs.2022.3.2.11
[25]  Manik, M. M. T. G. (2023). Multi-Omics Integration with Machine Learning for Early Detection of Ischemic Stroke Through Biomarkers Discovery. Journal of Ecohumanism, 2, 175-187.
https://doi.org/10.62754/joe.v2i2.6800
[26]  Manik, M. M. T. G. (2025). Integrative Analysis of Heterogeneous Cancer Data Using Autoencoder Neural Networks. Journal of Information Systems Engineering and Management, 10, 548-554.
https://doi.org/10.52783/jisem.v10i3s.4746
[27]  Manik, M. M. T. G., Bhuiyan, M. M. R., Moniruzzaman, M., Islam, M. S., Hossain, S., & Hossain, S. (2018). The Future of Drug Discovery Utilizing Generative AI and Big Data Analytics for Accelerating Pharmaceutical Innovations. Nanotechnology Perceptions, 14, 120-135.
https://nano-ntp.com/index.php/nano/article/view/4766
[28]  Manik, M. M. T. G., Hossain, S., Ahmed, M. K., Rozario, E., Miah, M. A., Moniruz-zaman, M., Islam, M. S., & Saimon, A. S. M. (2022). Integrating Genomic Data and Machine Learning to Advance Precision Oncology and Targeted Cancer Therapies. Nanotechnology Perceptions, 18, 219-243.
https://doi.org/10.62441/nano-ntp.v18i2.5443
[29]  Manik, M. M. T. G., Mohonta, S. C., Karim, F., Miah, M. A., Islam, M. S., Chy, M. А. R., & Saimon, A. S. M. (2025a). AI-Driven Precision Medicine Leveraging Machine Learning and Big Data Analytics for Genomics-Based Drug Discovery. Journal of Posthumanism, 5, 1560-1580.
https://doi.org/10.63332/joph.v5i1.1993
[30]  Manik, M. M. T. G., Moniruzzaman, M., Islam, M. S., Bhuiyan, M. M. R., Rozario, E., Hossain, S., Ahmed, M. K., & Saimon, A. S. M. (2020). The Role of Big Data in Combatting Antibiotic Resistance Predictive Models for Global Surveillance. Nanotechnology Perceptions, 16, 361-378.
https://nano-ntp.com/index.php/nano/article/view/5445
[31]  Manik, M. M. T. G., Saimon, A. S. M., Islam, M. S., Moniruzzaman, M., Rozario, E., & Hossin, M. E. (2025b). Big Data Analytics for Credit Risk Assessment. In 2025 International Conference on Machine Learning and Autonomous Systems (ICMLAS) (pp. 1379-1390). IEEE.
https://doi.org/10.1109/icmlas64557.2025.10967667
[32]  Manik, M. M. T. G., Saimon, A. S. M., Miah, M. A., Ahmed, M. K., Khair, F. B., Moniruzzaman, M., Islam, M. S., & Bhuiyan, M. M. R. (2021). Leveraging AI-Powered Predictive Analytics for Early Detection of Chronic Diseases: A Data-Driven Approach to Personalized Medicine. Nanotechnology Perceptions, 17, 269-288.
https://nano-ntp.com/index.php/nano/article/view/5444
[33]  Miah, M. A., Ahmed, M. K., Bhuiyan, M. M. R., Chy, M. А. R., Khair, F. B., Uddin, M., & Manik, M. M. T. G. (2025). Big Data Analytics for Enhancing Coal-Based Energy Pro-duction Amidst AI Infrastructure Growth. Journal of Posthumanism, 5, 5061-5080.
https://doi.org/10.63332/joph.v5i5.2087
[34]  Miah, M. A., Rozario, E., Khair, F. B., Ahmed, M. K., Bhuiyan, M. M. R., & Manik, M. M. T. G. (2019). Harnessing Wearable Health Data and Deep Learning Algorithms for Real-Time Cardiovascular Disease Monitoring and Prevention. Nanotechnology Perceptions, 15, 326-349.
https://doi.org/10.62441/nano-ntp.v15i3.5278
[35]  Mirza, A., & Iqbal, R. (2024). Harnessing AI in IT Operations: Transforming Automation and Efficiency. Asian American Research Letters Journal, 1, 22-34.
[36]  Moniruzzaman, M., Islam, M. S., Mohonta, S. C., Adnan, M., Chy, M. А. R., Saimon, A. S. M., & Manik, M. M. T. G. (2025). Big Data Strategies for Enhancing Transparency in U.S. Healthcare Pricing. Journal of Posthumanism, 5, 3744-3766.
https://doi.org/10.63332/joph.v5i5.1813
[37]  Monteiro, T. A., de Oliveira, F. C. R., & Georges, M. R. R. (2024). Connectivity and Consumption: Exploring Changes in Consumer Behavior in the Digital Era. Innovative Economics and Management, 11, 6-24.
[38]  Nguyen, N. P., & Mogaji, E. (2023). Artificial Intelligence for Seamless Experience across Channels. In Artificial Intelligence in Customer Service: The Next Frontier for Personalized Engagement (pp. 181-203). Springer International Publishing.
[39]  Odeyemi, O., Elufioye, O. A., Mhlongo, N. Z., & Ifesinachi, A. (2024). AI in e-Commerce: Reviewing Developments in the USA and Their Global Influence. International Journal of Science and Research Archive, 11, 1460-1468.
[40]  Perri, A., & Rocha, V. (2024). Grand Innovation Challenges: Celebrating 30 Years of Industry and Innovation with a Special Issue. Industry and Innovation, 31, 1-15.
[41]  Rahman, M. S., Islam, S., Khan, S. I., Ashik, A. A. M., Hossain, E., & Rahman, M. M. (2024). Redefining Marketing and Management Strategies in Digital Age: Adapting to Consumer Behavior and Technological Disruption. Journal of Information Systems Engineering and Management, 9, 1-16.
https://doi.org/10.52783/jisem.v9i4.32
[42]  Rane, N. L., Paramesha, M., Choudhary, S. P., & Rane, J. (2024). Artificial Intelligence, Machine Learning, and Deep Learning for Advanced Business Strategies: A Review. Partners Universal International Innovation Journal, 2, 147-171.
[43]  Schönberger, M. (2023). Artificial Intelligence for Small and Medium-Sized Enterprises: Identifying Key Applications and Challenges. Journal of Business Management, 21, 89-112.
[44]  Schrage, M., Kiron, D., Candelon, F., Candelon, O., Khodabandeh, S., & Chu, M. (2023). Improve Key Performance Indicators with AI. MIT Sloan Management Review, 64, 1-7.
[45]  Selvarajan, G. P. (2023). Augmenting Business Intelligence with AI: A Comprehensive Approach to Data-Driven Strategy and Predictive Analytics. International Journal of All Research Education and Scientific Methods, 11, 2121-2132.
[46]  Srinivas, D., Ramachandran, K. K., Gupta, M., Praveena, K., Anandhi, R. J., & Kumar, S. (2024). Artificial Intelligence-Based Enterprise Management Model for Consumer Psychology: Marching Towards Digital. In 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) (pp. 1596-1600). IEEE.
[47]  Stoica, I., Song, D., Popa, R. A., Patterson, D., Mahoney, M. W., Katz, R., & Abbeel, P. (2017). A Berkeley View of Systems Challenges for AI.
[48]  Sultana, S.., Karim, F., Rahman, H., Chy M. А. R., Uddin, M., Khan, M. N., Hossin, M. E., & Rozario, E. (2024). A Comparative Review of Machine Learning Algorithms in Supermarket Sales Forecasting with Big Data. Journal of Ecohumanism, 3, 14457-14467.
https://doi.org/10.62754/joe.v3i8.6762
[49]  Tanvir, A., Jo, J., & Park, S. M. (2024). Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson’s Disease. Cells, 13, 1876.
[50]  Vashishth, T. K., Sharma, K. K., Kumar, B., Chaudhary, S., & Panwar, R. (2024). Enhancing Customer Experience through AI-Enabled Content Personalization in E-Commerce Marketing. In Advances in Digital Marketing in the Era of Artificial Intelligence (pp. 7-32). CRC Press.
https://doi.org/10.1201/9781003450443-2
[51]  Westcott, B., & Vela, C. (2024). A Privacy-Preserving Hyper-Personalized Engagement Platform Using Generative AI with Comprehensive Quality and Branding Assurance.
[52]  Yadav, S. S. K., & Mishra, G. (2024). Robotic Process Automation Applications across Industries: An Exploration. In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 7, pp. 26-32). IEEE.
[53]  Zhang, S. (2024). The Role of Artificial Intelligence in Enhancing Online Sales and the Customer Experience.
[54]  Zhang, X., Chen, Y., & Huang, Q. (2020). Evaluating the Performance of AI Algorithms in Sales Forecasting: A Comparison with Traditional Approaches. Journal of Business Analytics, 3, 101-117.
https://doi.org/10.1080/2573234X.2020.1849265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133