全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向老旧社区楼道的低功耗物联网火灾预警系统设计与实现
Design and Implementation of a Low-Power Internet of Things Fire Early Warning System for Older Community Stairwells

DOI: 10.12677/jsta.2025.134058, PP. 593-603

Keywords: YOLOv10,物联网,智慧消防,火灾监测,边缘计算
YOLOv10
, Internet of Things, Smart Fire, Fire Monitoring, Edge Computing

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对老旧居民楼火灾烟雾报警器失效的问题,本文开发了一种基于改进YOLOv10的物联网边缘计算火灾预警系统。通过设计多尺度融合模块、双模态记忆模块,结合轻量化改进策略,在树莓派5代平台实现火灾检测模型的部署。构建三级预警机制,并与社区物联网平台和119系统联动,形成“端–边–云”协同架构。实验表明,系统在三种数据集上达到86.3% mAP,误报率低于5%,推理帧率达到24.7 FPS。研究成果验证了时序感知模型与边缘计算融合的可行性,助力老旧小区消防智能化改造。
Aiming at the problem of failing fire and smoke alarms in old residential buildings, this paper develops an edge computing fire warning system based on improved YOLOv10 for the Internet of Things. By designing a multi-scale fusion module and a bimodal memory module, combined with a lightweight improvement strategy, the deployment of the fire detection model is realized on the Raspberry Pi 5 generation platform. A three-level early warning mechanism is constructed and linked with the community IoT platform and 119 system to form an “end-edge-cloud” cooperative architecture. Experiments show that the system achieves 86.3% mAP on three datasets, the false alarm rate is lower than 5%, and the inference frame rate reaches 24.7 FPS. The research results validate the feasibility of fusion of time-series sensing model and edge computing, and help the intelligent transformation of fire protection in old neighborhoods.

References

[1]  朱贺新, 赵元苏, 郭蕊, 等. 基于YOLOv8火灾检测及告警系统的设计与实现[J]. 北京工业职业技术学院学报, 2025, 24(2): 16-20.
[2]  Kim, B. and Lee, J. (2019) A Video-Based Fire Detection Using Deep Learning Models. Applied Sciences, 9, Article No. 2862.
https://doi.org/10.3390/app9142862
[3]  Dimitropoulos, K., Barmpoutis, P. and Grammalidis, N. (2015) Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection. IEEE Transactions on Circuits and Systems for Video Technology, 25, 339-351.
https://doi.org/10.1109/tcsvt.2014.2339592
[4]  张硕羲, 姚涵文, 曹存盼, 等. 基于深度学习算法的化工园区火灾检测方法[J]. 信息技术与信息化, 2025(2): 117-120.
[5]  石春鹤, 张浩楠. 基于改进YOLOv3的小尺度车辆目标检测算法[J]. 沈阳大学学报(自然科学版), 2024, 36(3): 213-220+273.
[6]  李钦荣, 马驰, 胡辉, 等. 基于改进YOLOv3的雨天环境车辆目标检测研究[J]. 电脑编程技巧与维护, 2024(4): 144-146+153.
[7]  邓力, 谢爽爽, 朱博, 等. 基于改进YOLOv5的树莓派火焰识别系统[J]. 太赫兹科学与电子信息学报, 2024, 22(7): 776-780.
[8]  毛少华, 王文东. 基于深度学习的YOLO系列物体检测算法研究综述[J]. 延安大学学报(自然科学版), 2024, 43(2): 88-95.
[9]  Wang, A., Chen, H., Liu, L., et al. (2024) Yolov10: Real-Time End-to-End Object Detection. 37th International Conference on Neural Information Processing Systems, New Orleans, 10-16 December 2023, 107984-108011.
[10]  Girshick, R. (2015) Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448.
https://doi.org/10.1109/iccv.2015.169
[11]  Tan, M., Pang, R. and Le, Q.V. (2020) EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 10781-10790.
https://doi.org/10.1109/cvpr42600.2020.01079
[12]  Terven, J., Córdova-Esparza, D. and Romero-González, J. (2023) A Comprehensive Review of YOLO Architectures in Computer Vision: From Yolov1 to Yolov8 and Yolo-Nas. Machine Learning and Knowledge Extraction, 5, 1680-1716.
https://doi.org/10.3390/make5040083
[13]  李毅, 孙正兴, 远博, 等. 一种改进的帧差和背景减相结合的运动检测方法[J]. 中国图象图形学报, 2009, 14(6): 1162-1168.
[14]  周红福, 孙凯文. 基于改进LSTM的多时隙工业时序数据预测方法研究[J]. 自动化仪表, 2025, 46(4): 86-91.
[15]  李嘉源, 王晓东, 何启学. CNN增强型Informer模型在工业时间序列预测中的应用及性能优化[J]. 计算机应用, 2024, 44(S2): 79-83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133