全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于神经网络的螺杆膨胀机发电变工况预测方法研究
Research on Prediction Method of Power Generation Variable Condition of Screw Expander Based on Neural Network

DOI: 10.12677/dsc.2025.143023, PP. 221-236

Keywords: 螺杆膨胀机,余压发电,神经网络,运行工况
Screw Expender
, Residual Pressure Power Generation, Neural Network, Operating Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

螺杆膨胀机是余压发电系统的重要动力设备,为了获得螺杆膨胀机发电系统的较优运行工况,本文提出了基于BP神经网络模型、广义回归神经网络模型和卷积神经网络模型的螺杆膨胀机变工况的预测方法,并对三种神经网络模型的预测性能进行了比较分析。预测结果表明:广义回归神经网络模型的预测效果最为理想,卷积神经网络模型预测结果的偏差较大,它们对螺杆膨胀机的功率和发电量预测的平均相对误差分别为4.07%、4.93%、39.32%和8.34%、12.14%、39.39%。将螺杆膨胀机的功率和发电量分为较高、中等和较低三个范围,采用广义回归神经网络模型预测了相应范围的入口蒸汽流量、蒸汽压力和蒸汽温度,最终对螺杆膨胀机发电的运行工况进行了优化,这对于螺杆膨胀机发电系统的节能减排具有重要意义。
The screw expander is a critical power equipment in the residual pressure power generation system. To obtain the optimal operating conditions of the screw expander power generation system, this paper proposes a prediction method for the variable operating conditions of the screw expander based on the BP neural network model, the generalized regression neural network model and the convolutional neural network model. It conducts a comparative analysis of the prediction performance of the three neural network models. The prediction results show that the prediction effect of the generalized regression neural network model is the most ideal. In contrast, the deviation of the prediction results of the convolutional neural network model is relatively large. The average relative errors of their predictions for the power and power generation of the screw expander are 4.07%, 4.93%, 39.32% and 8.34%, 12.14%, 39.39% respectively. The power and power generation of the screw expander were divided into three ranges: high, medium and low. The generalized regression neural network model was adopted to predict the corresponding range of inlet steam flow, steam pressure, and steam temperature. Finally, the operating conditions of the screw expander power generation were optimized, which is of great significance for energy conservation and emission reduction of the screw expander power generation system.

References

[1]  孙富德. 螺杆膨胀机在火力发电厂中的应用[J]. 山东煤炭科技, 2002(3): 27-29.
[2]  杜祥琬. 中国能源中长期发展战略[J]. 中国经济和信息化, 2011(2): 22-23.
[3]  Zhang, C., Gao, J., Fu, J., Li, Y. and Lin, J. (2019) Research on Structural Parameter Optimization and Thermal Performance of Twin-Screw Expander. International Journal of Low-Carbon Technologies, 14, 386-393.
https://doi.org/10.1093/ijlct/ctz026
[4]  武萌. 双螺杆膨胀机新型交叉轴锥形螺杆转子的性能研究[D]: [硕士学位论文]. 东营: 中国石油大学(华东), 2024.
[5]  付洁. 基于转子型线分析的双螺杆膨胀机热力性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019.
[6]  肖文明. 平衡式双螺杆膨胀机流体动态特性研究[D]: [硕士学位论文]. 上海: 华东交通大学, 2021.
[7]  Zhao, Z., Yuan, H., Tian, Y. and Zhang, H. (2021) A Novel Method for Rotor Profile Optimization of High temperature Screw Expanders Employed in Waste Heat Recovery Systems. International Journal of Energy Research, 45, 8551-8563.
https://doi.org/10.1002/er.6392
[8]  刁安娜, 韩冰, 冯明志, 等. 无油螺杆膨胀机工作过程模拟及热力性能分析[J]. 化工设备与管道, 2018, 55(5): 49-53.
[9]  周岳, 卢笋, 谢楷. 螺杆膨胀机有机朗肯循环有机工质研究[J]. 化工设备与管道, 2019, 56(2): 47-52.
[10]  Papes, I., Degroote, J. and Vierendeels, J. (2015) New Insights in Twin Screw Expander Performance for Small Scale ORC Systems from 3D CFD Analysis. Applied Thermal Engineering, 91, 535-546.
https://doi.org/10.1016/j.applthermaleng.2015.08.034
[11]  He, Y., Wu, H., Zhang, Y., Jin, T. and Xing, Z. (2022) Experimental Research on the Effects of Suction Ports on Twin Screw Expander Performance. Applied Sciences, 12, Article 3979.
https://doi.org/10.3390/app12083979
[12]  Nikolov, A. and Brümmer, A. (2017) Investigating a Small Oil-Flooded Twin-Screw Expander for Waste-Heat Utilisation in Organic Rankine Cycle Systems. Energies, 10, Article 869.
https://doi.org/10.3390/en10070869
[13]  卢鑫海. 多工况反动式速度型CO2膨胀机的设计及其关键技术研究[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2023.
[14]  赵丽, 李敏霞, 马一太. R22转子式膨胀机的多工况仿真计算与运转试验[J]. 工程热物理学报, 2014, 35(3): 440-444.
[15]  寇文珍, 唐仲杰, 崇磊, 等. 基于BP神经网络和遗传算法的光伏电站功率预测[J]. 光源与照明, 2024(11): 123-125.
[16]  苏世杰, 杨雷, 李俊楠, 等. 基于优化BP神经网络的电力负荷概率密度预测[J]. 电子设计工程, 2024, 32(22): 124-127+132.
[17]  张二辉, 徐兴朝, 郑卫剑, 等. 基于广义回归神经网络的风力发电场设备温度自适应预测方法[J]. 自动化与仪表, 2024, 39(10): 72-75.
[18]  仝新宇, 张宇泽, 张长生, 等. 基于广义回归神经网络的有源配电网网供负荷预测方法[J]. 供用电, 2020, 37(12): 40-45.
[19]  吴强. 电力系统负荷预测中数据挖掘技术的应用研究[J]. 电力设备管理, 2024(22): 14-16.
[20]  周飞燃, 曾德良, 胡勇. 基于神经网络预测的主蒸汽温度控制方法研究[J]. 热能动力工程, 2024, 39(10): 148-158.
[21]  郑娱泉. 螺杆膨胀机的研究[J]. 四川工业学院学报, 1991(3): 150-164.
[22]  曹滨斌. 螺杆膨胀机余热回收系统分析[D]: [硕士学位论文]. 天津: 天津大学, 2007.
[23]  洪毅, 吴杰, 宋明. 人工神经网络的研究[J]. 湖南大学学报(自然科学版), 1993(3): 79-85.
[24]  李晓峰, 刘光中. 人工神经网络BP算法的改进及其应用[J]. 四川大学学报(工程科学版), 2000(2): 105-109.
[25]  刘天舒. BP神经网络的改进研究及应用[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2011.
[26]  郭艳莉. 基于灰色-广义回归神经网络的私人汽车拥有量分析及预测[D]: [硕士学位论文]. 北京: 华北电力大学(北京), 2023.
[27]  沈跃云, 高小涛, 孟硕. 600 MW墙式燃烧锅炉氮氧化物排放浓度与主要运行因素的多元线性回归研究[J]. 热能动力工程, 2011, 26(6): 726-731.
[28]  王玺琨. 基于CNN的交互行为识别技术研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2024.
[29]  周浩亮. 模糊数学基本理论及其应用[J]. 建井技术, 1994(4): 70-80.
[30]  胡春波, 王坤, 曾卓雄, 等. 液滴破碎模糊计算研究[J]. 西北工业大学学报, 2003(5): 536-539.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133