全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泛素特异性蛋白酶24在恶性肿瘤进展中的研究
Research on the Role of USP24 in Malignant Tumor Progression

DOI: 10.12677/acm.2025.1571987, PP. 285-293

Keywords: 泛素特异性蛋白酶24,恶性肿瘤,靶向治疗
Ubiquitin-Specific Protease 24
, Malignant Tumors, Targeted Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

泛素特异性蛋白酶24 (USP24)是一种关键的去泛素化酶,广泛参与蛋白稳态调控、细胞周期调节、DNA损伤修复、自噬、铁死亡及免疫调节等生物过程。近年来,USP24在膀胱癌、肺癌、急性淋巴细胞白血病(T-ALL)、肝细胞癌(HCC)及胃癌中的作用逐步被揭示,并被认为是影响肿瘤进展、侵袭及耐药性的关键分子。USP24通过去泛素化作用稳定GSDMB、PLK1、MCL-1、Beclin1和p300等关键蛋白,并激活STAT3、Notch1、IL-6及自噬–铁死亡通路,调控肿瘤细胞的增殖、代谢重编程及免疫逃逸。临床研究表明,USP24高表达与患者不良预后密切相关,可作为潜在的生物标志物用于评估疾病进展及治疗反应。此外,USP24小分子抑制剂(如WP1130、EOAI3402143和NCI677397)在体外及体内实验中展现出抗肿瘤潜力。尽管USP24靶向治疗仍面临特异性、药物递送及副作用等挑战,但其在精准医学中的应用前景值得进一步探索。未来研究应深入揭示USP24在不同癌种中的具体作用机制,并优化靶向抑制策略,为肿瘤治疗提供新思路。
Ubiquitin-specific protease 24 (USP24) is a deubiquitinating enzyme that plays a crucial role in various biological processes, including protein homeostasis, cell cycle regulation, DNA damage repair, autophagy, ferroptosis, and immune modulation. In recent years, the role of USP24 in multiple malignant tumors, such as bladder cancer, lung cancer, acute lymphoblastic leukemia, hepatocellular carcinoma, and gastric cancer, has been increasingly elucidated. USP24 has been identified as a key molecule influencing tumor progression, invasion, and drug resistance. Mechanistically, USP24 stabilizes critical proteins (e.g., GSDMB, PLK1, MCL-1, Beclin1, and p300) through deubiquitination, thereby activating pathways such as STAT3, Notch1, IL-6, and autophagy-ferroptosis. These regulatory mechanisms contribute to tumor cell proliferation, metabolic reprogramming, and immune evasion. Clinical studies have shown that high USP24 expression is closely associated with poor prognosis and may serve as a potential biomarker for assessing disease progression and treatment response. Moreover, research on USP24 as a therapeutic target is ongoing, with certain small-molecule inhibitors (e.g., WP1130, EOAI3402143, and NCI677397) demonstrating antitumor potential in both in vitro and in vivo studies. Despite challenges such as specificity, drug delivery, and potential side effects, USP24 holds significant promise in precision medicine. Future research should focus on elucidating the specific mechanisms of USP24 in different cancer types and optimizing targeted inhibition strategies to provide novel insights and approaches for cancer therapy.

References

[1]  Motzer, R.J., Rane, P.P., Saretsky, T.L., Pawar, D., Martin Nguyen, A., Sundaram, M., et al. (2023) Patient-Reported Outcome Measurement and Reporting for Patients with Advanced Renal Cell Carcinoma: A Systematic Literature Review. European Urology, 84, 406-417.
https://doi.org/10.1016/j.eururo.2023.07.006
[2]  Sánchez-Gastaldo, A., Kempf, E., González del Alba, A. and Duran, I. (2017) Systemic Treatment of Renal Cell Cancer: A Comprehensive Review. Cancer Treatment Reviews, 60, 77-89.
https://doi.org/10.1016/j.ctrv.2017.08.010
[3]  Keusekotten, K., Elliott, P.R., Glockner, L., Fiil, B.K., Damgaard, R.B., Kulathu, Y., et al. (2013) OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell, 153, 1312-1326.
https://doi.org/10.1016/j.cell.2013.05.014
[4]  Zheng, N. and Shabek, N. (2017) Ubiquitin Ligases: Structure, Function, and Regulation. Annual Review of Biochemistry, 86, 129-157.
https://doi.org/10.1146/annurev-biochem-060815-014922
[5]  Lacoursiere, R.E., Hadi, D. and Shaw, G.S. (2022) Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules, 12, Article 467.
https://doi.org/10.3390/biom12030467
[6]  Ren, J., Yu, P., Liu, S., Li, R., Niu, X., Chen, Y., et al. (2023) Deubiquitylating Enzymes in Cancer and Immunity. Advanced Science, 10, Article ID: 2303807.
https://doi.org/10.1002/advs.202303807
[7]  Klonisch, T., Logue, S.E., Hombach-Klonisch, S. and Vriend, J. (2023) Dubing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules, 13, Article 1503.
https://doi.org/10.3390/biom13101503
[8]  Dewson, G., Eichhorn, P.J.A. and Komander, D. (2023) Deubiquitinases in cancer. Nature Reviews Cancer, 23, 842-862.
https://doi.org/10.1038/s41568-023-00633-y
[9]  Kitamura, H. (2023) Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. International Journal of Molecular Sciences, 24, Article 3219.
https://doi.org/10.3390/ijms24043219
[10]  Kitamura, H. and Hashimoto, M. (2021) USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes. International Journal of Molecular Sciences, 22, Article 1209.
https://doi.org/10.3390/ijms22031209
[11]  Wang, S., Young, M., Jeng, W., Liu, C. and Hung, J. (2020) USP24 Stabilizes Bromodomain Containing Proteins to Promote Lung Cancer Malignancy. Scientific Reports, 10, Article No. 20870.
https://doi.org/10.1038/s41598-020-78000-2
[12]  Paolini, L., Hussain, S. and Galardy, P.J. (2022) Chromosome Instability in Neuroblastoma: A Pathway to Aggressive Disease. Frontiers in Oncology, 12, Article 988972.
https://doi.org/10.3389/fonc.2022.988972
[13]  Hu, Z., Zhao, Y., Mang, Y., Zhu, J., Yu, L., Li, L., et al. (2023) MiR-21-5p Promotes Sorafenib Resistance and Hepatocellular Carcinoma Progression by Regulating SIRT7 Ubiquitination through USP24. Life Sciences, 325, Article ID: 121773.
https://doi.org/10.1016/j.lfs.2023.121773
[14]  Zhi, X., Jiang, S., Zhang, J. and Qin, J. (2023) Ubiquitin‐Specific Peptidase 24 Accelerates Aerobic Glycolysis and Tumor Progression in Gastric Carcinoma through Stabilizing PLK1 to Activate NOTCH1. Cancer Science, 114, 3087-3100.
https://doi.org/10.1111/cas.15847
[15]  Wang, C., Cao, Q., Zhang, S., Liu, H., Duan, H., Xia, W., et al. (2023) Anlotinib Enhances the Therapeutic Effect of Bladder Cancer with GSDMB Expression: Analyzed from TCGA Bladder Cancer Database & Mouse Bladder Cancer Cell Line. Pharmacogenomics and Personalized Medicine, 16, 219-228.
https://doi.org/10.2147/pgpm.s398451
[16]  Wang, Y., Wu, Y., Hung, C., Wang, S., Young, M., Hsu, T., et al. (2018) USP24 Induces IL-6 in Tumor-Associated Microenvironment by Stabilizing P300 and β-TrCP and Promotes Cancer Malignancy. Nature Communications, 9, Article No. 3996.
https://doi.org/10.1038/s41467-018-06178-1
[17]  Luo, H., Jing, B., Xia, Y., Zhang, Y., Hu, M., Cai, H., et al. (2019) WP1130 Reveals USP24 as a Novel Target in T-Cell Acute Lymphoblastic Leukemia. Cancer Cell International, 19, Article No. 56.
https://doi.org/10.1186/s12935-019-0773-6
[18]  Thayer, J.A., Awad, O., Hegdekar, N., Sarkar, C., Tesfay, H., Burt, C., et al. (2019) The PARK10 Gene USP24 Is a Negative Regulator of Autophagy and ULK1 Protein Stability. Autophagy, 16, 140-153.
https://doi.org/10.1080/15548627.2019.1598754
[19]  Chen, D., Chen, C., Tan, J., Yang, J. and Chen, B. (2023) ERK Inhibition Aids IFN-β Promoter Activation during EV71 Infection by Blocking CRYAB Degradation in SH-SY5Y Cells. Pathogens and Disease, 81, ftad011.
https://doi.org/10.1093/femspd/ftad011
[20]  Chouri, E., Wang, M., Hillen, M.R., Angiolilli, C., Silva-Cardoso, S.C., Wichers, C.G.K., et al. (2021) Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis. Journal of Clinical Medicine, 10, Article 491.
https://doi.org/10.3390/jcm10030491
[21]  Song, X., Xia, B., Gao, X., Liu, X., Lv, H., Wang, S., et al. (2024) Related Cellular Signaling and Consequent Pathophysiological Outcomes of Ubiquitin Specific Protease 24. Life Sciences, 342, Article ID: 122512.
https://doi.org/10.1016/j.lfs.2024.122512
[22]  Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A., Lequin, D., et al. (2009) Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma. Journal of Clinical Oncology, 27, 1026-1033.
https://doi.org/10.1200/jco.2008.16.0630
[23]  Bedekovics, T., Hussain, S., Zhang, Y., Ali, A., Jeon, Y.J. and Galardy, P.J. (2021) USP24 Is a Cancer-Associated Ubiquitin Hydrolase, Novel Tumor Suppressor, and Chromosome Instability Gene Deleted in Neuroblastoma. Cancer Research, 81, 1321-1331.
https://doi.org/10.1158/0008-5472.can-20-1777
[24]  Sheltzer, J.M., Ko, J.H., Replogle, J.M., Habibe Burgos, N.C., Chung, E.S., Meehl, C.M., et al. (2017) Single-Chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell, 31, 240-255.
https://doi.org/10.1016/j.ccell.2016.12.004
[25]  Williams, B.R., Prabhu, V.R., Hunter, K.E., Glazier, C.M., Whittaker, C.A., Housman, D.E., et al. (2008) Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells. Science, 322, 703-709.
https://doi.org/10.1126/science.1160058
[26]  Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dunham, M.J., et al. (2007) Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast. Science, 317, 916-924.
https://doi.org/10.1126/science.1142210
[27]  Robey, R.W., Pluchino, K.M., Hall, M.D., Fojo, A.T., Bates, S.E. and Gottesman, M.M. (2018) Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nature Reviews Cancer, 18, 452-464.
https://doi.org/10.1038/s41568-018-0005-8
[28]  Shibue, T. and Weinberg, R.A. (2017) EMT, CSCs, and Drug Resistance: The Mechanistic Link and Clinical Implications. Nature Reviews Clinical Oncology, 14, 611-629.
https://doi.org/10.1038/nrclinonc.2017.44
[29]  Aziz, K., Nowsheen, S., Pantelias, G., Iliakis, G., Gorgoulis, V.G. and Georgakilas, A.G. (2012) Targeting DNA Damage and Repair: Embracing the Pharmacological Era for Successful Cancer Therapy. Pharmacology & Therapeutics, 133, 334-350.
https://doi.org/10.1016/j.pharmthera.2011.11.010
[30]  Dagogo-Jack, I. and Shaw, A.T. (2017) Tumour Heterogeneity and Resistance to Cancer Therapies. Nature Reviews Clinical Oncology, 15, 81-94.
https://doi.org/10.1038/nrclinonc.2017.166
[31]  Wang, S., Young, M., Wang, Y., Chen, S., Liu, C., Lo, Y., et al. (2021) USP24 Promotes Drug Resistance during Cancer Therapy. Cell Death & Differentiation, 28, 2690-2707.
https://doi.org/10.1038/s41418-021-00778-z
[32]  Yang, A., Herter-Sprie, G., Zhang, H., Lin, E.Y., Biancur, D., Wang, X., et al. (2018) Autophagy Sustains Pancreatic Cancer Growth through Both Cell-Autonomous and Nonautonomous Mechanisms. Cancer Discovery, 8, 276-287.
https://doi.org/10.1158/2159-8290.cd-17-0952
[33]  Cao, J., Wu, S., Zhao, S., Wang, L., Wu, Y., Song, L., et al. (2024) USP24 Promotes Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma by Reducing the K48-Linked Ubiquitination of Beclin1. Communications Biology, 7, Article No. 1279.
https://doi.org/10.1038/s42003-024-06999-5
[34]  Antoni, S., Ferlay, J., Soerjomataram, I., Znaor, A., Jemal, A. and Bray, F. (2017) Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. European Urology, 71, 96-108.
https://doi.org/10.1016/j.eururo.2016.06.010
[35]  Goulet, C.R., Champagne, A., Bernard, G., Vandal, D., Chabaud, S., Pouliot, F., et al. (2019) Cancer-Associated Fibroblasts Induce Epithelial-Mesenchymal Transition of Bladder Cancer Cells through Paracrine IL-6 Signalling. BMC Cancer, 19, Article No. 137.
https://doi.org/10.1186/s12885-019-5353-6
[36]  Chen, Z., Chen, X., Xie, R., Huang, M., Dong, W., Han, J., et al. (2019) DANCR Promotes Metastasis and Proliferation in Bladder Cancer Cells by Enhancing IL-11-STAT3 Signaling and CCND1 Expression. Molecular Therapy, 27, 326-341.
https://doi.org/10.1016/j.ymthe.2018.12.015
[37]  Santoni, M., Conti, A., Piva, F., Massari, F., Ciccarese, C., Burattini, L., et al. (2015) Role of STAT3 Pathway in Genitourinary Tumors. Future Science OA, 1, Article ID: FSO15.
https://doi.org/10.4155/fso.15.13
[38]  Li, L., Li, Y. and Bai, Y. (2020) Role of GSDMB in Pyroptosis and Cancer. Cancer Management and Research, 12, 3033-3043.
https://doi.org/10.2147/cmar.s246948
[39]  He, H., Yi, L., Zhang, B., Yan, B., Xiao, M., Ren, J., et al. (2021) USP24-GSDMB Complex Promotes Bladder Cancer Proliferation via Activation of the STAT3 Pathway. International Journal of Biological Sciences, 17, 2417-2429.
https://doi.org/10.7150/ijbs.54442
[40]  Zeng, L. and Zhou, M. (2002) Bromodomain: An Acetyl‐Lysine Binding Domain. FEBS Letters, 513, 124-128.
https://doi.org/10.1016/s0014-5793(01)03309-9
[41]  Kim, J.J., Lee, S.Y., Gong, F., Battenhouse, A.M., Boutz, D.R., Bashyal, A., et al. (2019) Systematic Bromodomain Protein Screens Identify Homologous Recombination and R-Loop Suppression Pathways Involved in Genome Integrity. Genes & Development, 33, 1751-1774.
https://doi.org/10.1101/gad.331231.119
[42]  Rawla, P. and Barsouk, A. (2019) Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Gastroenterology Review, 14, 26-38.
https://doi.org/10.5114/pg.2018.80001
[43]  Tan, Z. (2019) Recent Advances in the Surgical Treatment of Advanced Gastric Cancer: A Review. Medical Science Monitor, 25, 3537-3541.
https://doi.org/10.12659/msm.916475
[44]  Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542.
https://doi.org/10.1016/j.cgh.2019.07.045
[45]  Su, S., Chhabra, G., Ndiaye, M.A., Singh, C.K., Ye, T., Huang, W., et al. (2021) PLK1 and NOTCH Positively Correlate in Melanoma and Their Combined Inhibition Results in Synergistic Modulations of Key Melanoma Pathways. Molecular Cancer Therapeutics, 20, 161-172.
https://doi.org/10.1158/1535-7163.mct-20-0654
[46]  Li, X., Tao, Z., Wang, H., Deng, Z., Zhou, Y. and Du, Z. (2020) Dual Inhibition of SRC and PLK1 Regulate Stemness and Induce Apoptosis through Notch1-SOX2 Signaling in EGFRvIII Positive Glioma Stem Cells (GSCs). Experimental Cell Research, 396, Article ID: 112261.
https://doi.org/10.1016/j.yexcr.2020.112261

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133