An experiment was conducted at three sites (Serabu, Gbassia and Foya) in Sierra Leone during the 2020/2021 and 2021/2022 cropping seasons to assess the cassava crop loss as influenced by grasshopper incidence and severity damage in the upland of Sierra Leone. The experiment utilized three cassava genotypes (Cocoa, SLICASS 4 and SLICASS 6) and two crop pest management practices (protected and unprotected) laid out in a Randomized Complete Block Design (RCBD) with three replications. Findings revealed significant (p < 0.05) treatment × location × year interactions for fresh storage root yield (FSRY) loss, storage root number (SRN) loss and root dry matter content (RDMC) loss. Variety cocoa had the highest percent fresh storage yield loss (20.0%), number of storage roots per plant loss (42.9%) and root dry matter content loss (17.4%), whereas SLICASS 4 had the lowest of 13.3%, 37.7% and 9.5%, respectively. These findings are useful for determination of cassava crop loss using genotypes from diverse genetic backgrounds and cultivation technologies for identification of genotypes with minimal crop loss potential, selection and production of elite cassava genotype with desired end user traits.
References
[1]
Esuma, W., Nanyonjo, A.R., Miiro, R., Angudubo, S. and Kawuki, R.S. (2019) Men and Women’s Perception of Yellow-Root Cassava among Rural Farmers in Eastern Uganda. Agriculture&FoodSecurity, 8, Article No. 10. https://doi.org/10.1186/s40066-019-0253-1
[2]
A Otekunrin, O. and Sawicka, B. (2019) Cassava, a 21st Century Staple Crop: How Can Nigeria Harness Its Enormous Trade Potentials? ActaScientificAgriculture, 3, 194-202. https://doi.org/10.31080/asag.2019.03.0586
[3]
Nyirakanani, C., Bizimana, J.P., Kwibuka, Y., Nduwumuremyi, A., Bigirimana, V.D.P., Bucagu, C., et al. (2021) Farmer and Field Survey in Cassava-Growing Districts of Rwanda Reveals Key Factors Associated with Cassava Brown Streak Disease Incidence and Cassava Productivity. FrontiersinSustainableFoodSystems, 5, Article 699655. https://doi.org/10.3389/fsufs.2021.699655
[4]
Amelework, A.B., Bairu, M.W., Maema, O., Venter, S.L. and Laing, M. (2021) Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture. FrontiersinSustainableFoodSystems, 5, Article 617783. https://doi.org/10.3389/fsufs.2021.617783
Mbanjo, E.G.N., Rabbi, I.Y., Ferguson, M.E., Kayondo, S.I., Eng, N.H., Tripathi, L., et al. (2021) Technological Innovations for Improving Cassava Production in Sub-Saharan Africa. FrontiersinGenetics, 11, Article 623736. https://doi.org/10.3389/fgene.2020.623736
[7]
Spencer, D.S.C. and Ezedinma, C. (2017) Cassava Cultivation in Sub-Saharan Africa. In: Hershey, C.H., Ed., Achieving Sustainable Cultivation of Cassava Volume 1, BurleighDoddsSeriesinAgriculturalScience, Burleigh Dodds Science Publishing, 123-148. https://doi.org/10.19103/as.2016.0014.06
[8]
Burns, A., Gleadow, R., Cliff, J., Zacarias, A. and Cavagnaro, T. (2010) Cassava: The Drought, War and Famine Crop in a Changing World. Sustainability, 2, 3572-3607. https://doi.org/10.3390/su2113572
[9]
Szyniszewska, A.M. (2020) CassavaMap, a Fine-Resolution Disaggregation of Cassava Production and Harvested Area in Africa in 2014. ScientificData, 7, Article No. 159. https://doi.org/10.1038/s41597-020-0501-z
[10]
Orek, C., Gruissem, W., Ferguson, M. and Vanderschuren, H. (2020) Morpho-Physiological and Molecular Evaluation of Drought Tolerance in Cassava (Manihot esculenta Crantz). FieldCropsResearch, 255, Article ID: 107861. https://doi.org/10.1016/j.fcr.2020.107861
[11]
Imakumbili, M.L.E., Semu, E., Semoka, J.M.R., Abass, A. and Mkamilo, G. (2021) Managing Cassava Growth on Nutrient Poor Soils under Different Water Stress Conditions. Heliyon, 7, e07331. https://doi.org/10.1016/j.heliyon.2021.e07331
[12]
Abass, A.B., Towo, E., Mukuka, I., Okechukwu, R., Ranaivoson, R., Tarawali, G. and Kanju, E. (2014) Growing Cassava: A Training Manual from Production to Postharvest. International Institute of Tropical Agriculture (IITA), 36. https://hdl.handle.net/10568/80992
[13]
El-Sharkawy, M.A. (2012) Stress-Tolerant Cassava: The Role of Integrative Ecophysiology-Breeding Research in Crop Improvement. OpenJournalofSoilScience, 2, 162-186. https://doi.org/10.4236/ojss.2012.22022
[14]
Adjebeng-Danquah, J., Martey, E., Manu-Aduening, J., Gracen, V., Asante, I.K. and Offei, S.K. (2020) Farmers’ Perception on Drought Constraints and Mitigation Strategies in Cassava Cultivation in Northern Ghana: Implications for Cassava Breeding. SustainableFutures, 2, Article ID: 100041. https://doi.org/10.1016/j.sftr.2020.100041
[15]
Wooding, S.P. and Payahua, C.N. (2022) Ethnobotanical Diversity of Cassava (Manihot esculenta Crantz) in the Peruvian Amazon. Diversity, 14, Article 252. https://doi.org/10.3390/d14040252
[16]
Alves-Pereira, A., Zucchi, M.I., Clement, C.R., Viana, J.P.G., Pinheiro, J.B., Veasey, E.A., et al. (2022) Selective Signatures and High Genome-Wide Diversity in Traditional Brazilian Manioc (Manihot esculenta Crantz) Varieties. ScientificReports, 12, Article No. 1268. https://doi.org/10.1038/s41598-022-05160-8
[17]
Bellotti, A.C., Smith, L. and Lapointe, S.L. (1999) Recent Advances in Cassava Pest Management. AnnualReviewofEntomology, 44, 343-370. https://doi.org/10.1146/annurev.ento.44.1.343
[18]
Bellotti, A.C., Bernardo, A.V., Octavio, V.H. and Peña, J.E. (2000) Insects and Mites Causing Yield Losses in Cassava. In: Ospina, B. and Ceballos, H., Eds., Cassava in the Third Millenium, CIAT, 251-264.
[19]
USDA (United States Department of Agriculture) (2016) Basic Report: 11134, Cassava, raw. National Nutrient Database for Standard Reference Release 28. Agricultural Research Service, US Department of Agriculture.
[20]
FAO (Food and Agricultural Organization) (2010) Preparation of Cassava Leaf Products and Their Use as Animal Feeds. FAO Animal Production and Health Paper 95, 111-125.
[21]
Orek, C. (2024) A Review of Management of Major Arthropod Pests Affecting Cassava Production in Sub-Saharan Africa. Crop Protection, 175, Article ID: 106465. https://doi.org/10.1016/j.cropro.2023.106465
[22]
Kintché, K., Hauser, S., Mahungu, N.M., Ndonda, A., Lukombo, S., Nhamo, N., et al. (2017) Cassava Yield Loss in Farmer Fields Was Mainly Caused by Low Soil Fertility and Suboptimal Management Practices in Two Provinces of the Democratic Republic of Congo. EuropeanJournalofAgronomy, 89, 107-123. https://doi.org/10.1016/j.eja.2017.06.011
[23]
Bellotti, A.C. (2002) Arthropod Pests. In: Hillocks, R.J., Thresh, J.M. and Bellotti, A.C., Eds., Cassava: Biology, Production and Utilization, CABI Publishing, 209-235.
[24]
Torto, S.J., Samura, A.E., Norman, P.E., Sundufu, A.J., Musa, D.P., Kanu, S.A., Quee, D.D. and Fomba, S.N. (2023) Farmers’ Perception on Severity, Crop Loss and Management Practices of Variegated Grasshopper (Zonocerus variegatus L.) on Cassava (Manihot esculenta Crantz) in Sierra Leone. Magna Scientia Advanced Re-search and Reviews, 9, 34-43. https://doi.org/10.30574/msarr.2023.9.1.0129
[25]
Liu, S.B., Yin, G.M., Gao, B., Zhang, Y.Y., Xue, Y.L., Zhang, Y., Ma, C.Y., Shan, Y.M., Jia, M., Ding, H.J., Bai, C.L., Sun, L., Tian, Y.J. and Gao, X. (2017) Grassland Pests Control Strategies and Benefit Study in the Inner Mongolia. Animal Husbandry and Feed Science, 38, 55-56.
[26]
Mansaray, A., Sundufu, A.J., Samura, A.E., Massaquoi, F.B., Quee, D.D., Fomba, S.N. and Moseray, M.T. (2012). Cassava Genotype Evaluation for Grasshopper Zonocerus variegatus (L) (Orthoptera pyrgomorphidae) Susceptibility in Southern Sierra Leone. International Journal of Agriculture and Forestry, 2, 294-299.
[27]
Uchenna, M.N., Theophilus, C.N.N., Emmanuel, I. and Peter, I.E. (2015) Effects of Moringa Oleifera Leaf Extract on Morphological and Physiological Growth of Cassava and Its Efficacy in Controlling Zonocerus variegatus. AfricanJournalofBiotechnology, 14, 2494-2500. https://doi.org/10.5897/ajb2015.14534
[28]
Fukuda, W.M.G., Guevara, C.L., Kawuk, R. and Ferguson, M.E. (2010) Selected Morphological and Agronomic Descriptors for the Characterization of Cassava. International Institute of Tropical Agriculture (IITA), 19.
[29]
Cock, J.H. (1978) Physiological Basis of Yield Loss in Cassava Due to Pests. In: Bre-kelbaum, T., Bellotti, A.C. and Lozano, J.C., Eds., Cassava Protection Workshop, CIAT, 9-16.
[30]
Torto, S.J., Samura, A.E., Sundufu, A.J., Quee, D.D., Musa, D.P., Kanu, S.A., et al. (2023) Infestación de Saltamontes (Zonocerus variegatus L) y Contenido de Materia Seca en Raíces de Yuca Influenciados por la Fecha de Siembra y los Genotipos de Yuca. PeruvianJournalofAgronomy, 7, 42-50. https://doi.org/10.21704/pja.v7i1.2001
[31]
El-Sharkawy, M.A., Hernández, A.D.P. and Hershey, C. (1992) Yield Stability of Cassava during Prolonged Mid-Season Water Stress. ExperimentalAgriculture, 28, 165-174. https://doi.org/10.1017/S0014479700019608
[32]
Bellotti, A.C. (2000) Las plagas principales del cultivo de la yuca: Un panorama global. Symposiumon “AvancesenelManejodePlagas”. Proceeding ofXXVIICongressofSOCOLEN, Medellín, July 2000, 189-217.
[33]
Page, W.W., Harris, J.R.W. and Youdeowei, A. (1980). Defoliation and Consequent Crop Loss in Cassava Caused by the Grasshopper Zonocerus variegatus (L.) (Orthop-tera: Pyrgomorphidae) in Southern Nigeria. BulletinofEntomologicalResearch, 70, 151-163.
[34]
James, B., Yaninek, J., Neuenschwander, P., Cudjoe, A., Modder, W., Echendu, N. and Toko, M. (2000) Pest Control in Cassava Farms: IPM Field Guide for Extension Agents. Wordsmithes Printers, 20.
[35]
Ilieva, T., Karova, A. and Ivanova, M. (2025) Sustainable Agriculture through Integrated Pest Management: Strategies for Effective Implementation. In: Nathanail, E.G., Gavanas, N. and Adamos, E., Eds., Climate Crisis and Resilient Transportation Systems, Springer, 511-520. https://doi.org/10.1007/978-3-031-82818-8_38