全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

M1区和小脑区重复经颅磁刺激对卒中后患者下肢的影响
The Effect of Repetitive Transcranial Magnetic Stimulation in the M1 and Cerebellar Areas on Lower Limb Function in Post-Stroke

DOI: 10.12677/acm.2025.1571967, PP. 132-140

Keywords: 经颅磁刺激,卒中康复,下肢
Transcranial Magnetic Stimulation
, Stroke Rehabilitation, Lower Extremity

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探究重复经颅磁刺激作用于卒中后患者小脑区和M1区对下肢运动、平衡功能及皮层兴奋性的影响和差异性。方法:选取卒中后偏瘫患者39例为研究对象,按照计算机随机分组分为假刺激组、M1组和小脑组,每组13例,干预组进行相应靶点低频重复经颅磁刺激治疗、常规药物及康复治疗,假刺激组除外常规药物及康复治疗,予以假磁刺激治疗。结果:三组患者治疗前FMA-LE量表评分、BBS量表评分、坐站行走测试时间、10米步行测试时间、双侧足底压力对称指数、身体压力中心摆动面积无显著差异(p > 0.05),治疗后三组患者指标均较治疗前有所改善(p < 0.05),干预组量表评分均优于假刺激组(p < 0.05),且小脑组在站立及步行中平衡改善优于假刺激组(p < 0.05)。结论:M1区和小脑区低频rTMS均能有效改善卒中后患者的下肢功能,而小脑区刺激对下肢平衡功能的恢复效果更佳。
Objective: To investigate the effects and differences of low-frequency repetitive transcranial magnetic stimulation (rTMS) applied to the cerebellar region and M1 area on lower limb motor function, balance function, and cortical excitability in post-stroke patients. Methods: Thirty-nine hemiplegic patients after stroke were randomly divided into three groups (sham stimulation group, M1 group, and cerebellar group) with 13 cases each. The intervention groups received low-frequency rTMS targeting specific regions combined with routine medication and rehabilitation therapy, while the sham stimulation group received sham magnetic stimulation without routine treatments. Results: No significant differences (p > 0.05) were observed in baseline FMA-LE scores, BBS scores, time up and go Test duration, 10-meter walk test duration, plantar pressure symmetry index, or center of pressure sway area among the three groups. Post-treatment improvements were observed in all groups (p < 0.05), with intervention groups demonstrating superior scale scores compared to the sham group (p < 0.05). The cerebellar group showed better balance improvement during standing and walking than the sham group (p < 0.05). Conclusion: Both M1 and cerebellar low-frequency rTMS effectively improve lower limb function in post-stroke patients, with cerebellar stimulation demonstrating superior efficacy in restoring balance function.

References

[1]  GBD 2021 Stroke Risk Factor Collaborators (2024) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23, 973-1003.
[2]  Anwar, N., Karimi, H., Ahmad, A., Mumtaz, N., Saqulain, G. and Gilani, S.A. (2021) A Novel Virtual Reality Training Strategy for Poststroke Patients: A Randomized Clinical Trial. Journal of Healthcare Engineering, 2021, Article ID: 6598726.
https://doi.org/10.1155/2021/6598726
[3]  Dai, S., Piscicelli, C., Clarac, E., Baciu, M., Hommel, M. and Pérennou, D. (2021) Balance, Lateropulsion, and Gait Disorders in Subacute Stroke. Neurology, 96, 2147-2159.
https://doi.org/10.1212/wnl.0000000000011152
[4]  Bower, K., Thilarajah, S., Pua, Y., Williams, G., Tan, D., Mentiplay, B., et al. (2019) Dynamic Balance and Instrumented Gait Variables Are Independent Predictors of Falls Following Stroke. Journal of NeuroEngineering and Rehabilitation, 16, Article No. 3.
https://doi.org/10.1186/s12984-018-0478-4
[5]  Wu, W., Zhou, C., Wang, Z., Chen, G., Chen, X., Jin, H., et al. (2020) Effect of Early and Intensive Rehabilitation after Ischemic Stroke on Functional Recovery of the Lower Limbs: A Pilot, Randomized Trial. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104649.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104649
[6]  Lee, D. and Bae, Y. (2022) Interactive Videogame Improved Rehabilitation Motivation and Walking Speed in Chronic Stroke Patients: A Dual-Center Controlled Trial. Games for Health Journal, 11, 268-274.
https://doi.org/10.1089/g4h.2021.0123
[7]  Janssen, A.M., Oostendorp, T.F. and Stegeman, D.F. (2015) The Coil Orientation Dependency of the Electric Field Induced by TMS for M1 and Other Brain Areas. Journal of NeuroEngineering and Rehabilitation, 12, Article No. 47.
https://doi.org/10.1186/s12984-015-0036-2
[8]  Parikh, V., Medley, A. and Goh, H. (2024) Effects of rTMS to Primary Motor Cortex and Cerebellum on Balance Control in Healthy Adults. European Journal of Neuroscience, 60, 3984-3994.
https://doi.org/10.1111/ejn.16386
[9]  Chen, Q., Yao, F., Sun, H., Chen, Z., Ke, J., Liao, J., et al. (2021) Combining Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Improves Motor Function by Modulating GABA in Acute Ischemic Stroke Patients. Restorative Neurology and Neuroscience, 39, 419-434.
https://doi.org/10.3233/rnn-211195
[10]  Bai, Z., Zhang, J. and Fong, K.N.K. (2022) Effects of Transcranial Magnetic Stimulation in Modulating Cortical Excitability in Patients with Stroke: A Systematic Review and Meta-Analysis. Journal of NeuroEngineering and Rehabilitation, 19, Article No. 24.
https://doi.org/10.1186/s12984-022-00999-4
[11]  Gao, Q., Xie, Y., Chen, Y., Tan, H., Guo, Q. and Lau, B. (2021) Repetitive Transcranial Magnetic Stimulation for Lower Extremity Motor Function in Patients with Stroke: A Systematic Review and Network Meta-Analysis. Neural Regeneration Research, 16, 1168-1176.
https://doi.org/10.4103/1673-5374.300341
[12]  Palesi, F., De Rinaldis, A., Castellazzi, G., Calamante, F., Muhlert, N., Chard, D., et al. (2017) Contralateral Cortico-Ponto-Cerebellar Pathways Reconstruction in Humans in Vivo: Implications for Reciprocal Cerebro-Cerebellar Structural Connectivity in Motor and Non-Motor Areas. Scientific Reports, 7, Article No. 12841.
https://doi.org/10.1038/s41598-017-13079-8
[13]  Zhu, P., Li, Z., Lu, Q., Nie, Y., Liu, H., Kiernan, E., et al. (2024) Can Cerebellar Theta-Burst Stimulation Improve Balance Function and Gait in Stroke Patients? A Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 60, 391-399.
https://doi.org/10.23736/s1973-9087.24.08307-2
[14]  中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019 [J]. 中华神经科杂志, 2019, 52(9): 710-715.
[15]  Koch, G., Bonnì, S., Casula, E.P., Iosa, M., Paolucci, S., Pellicciari, M.C., et al. (2019) Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurology, 76, 170-178.
https://doi.org/10.1001/jamaneurol.2018.3639
[16]  Liao, L., Xie, Y., Chen, Y. and Gao, Q. (2020) Cerebellar Theta-Burst Stimulation Combined with Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 35, 23-32.
https://doi.org/10.1177/1545968320971735
[17]  Cristine de Faria, L., Barbosa Marques, D., Hellen dos Santos Cerqueira Gomes, L., dos Anjos, S. and Pereira, N.D. (2022) Self-Reported Use of the Paretic Lower Extremity of People with Stroke: A Reliability and Validity Study of the Lower-Extremity Motor Activity Log (LE-MAL)—Brazil. Physiotherapy Theory and Practice, 39, 1727-1735.
https://doi.org/10.1080/09593985.2022.2043966
[18]  Blum, L. and Korner-Bitensky, N. (2008) Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Physical Therapy, 88, 559-566.
https://doi.org/10.2522/ptj.20070205
[19]  Ortega-Bastidas, P., Gómez, B., Aqueveque, P., Luarte-Martínez, S. and Cano-de-la-Cuerda, R. (2023) Instrumented Timed up and Go Test (ITUG)—More than Assessing Time to Predict Falls: A Systematic Review. Sensors, 23, Article No. 3426.
https://doi.org/10.3390/s23073426
[20]  Cheng, D.K., Nelson, M., Brooks, D. and Salbach, N.M. (2019) Validation of Stroke-Specific Protocols for the 10-Meter Walk Test and 6-Minute Walk Test Conducted Using 15-Meter and 30-Meter Walkways. Topics in Stroke Rehabilitation, 27, 251-261.
https://doi.org/10.1080/10749357.2019.1691815
[21]  Liao, L., Zhu, Y., Peng, Q., Gao, Q., Liu, L., Wang, Q., et al. (2023) Intermittent Theta-Burst Stimulation for Stroke: Primary Motor Cortex versus Cerebellar Stimulation: A Randomized Sham-Controlled Trial. Stroke, 55, 156-165.
https://doi.org/10.1161/strokeaha.123.044892
[22]  Grimaldi, G., Argyropoulos, G.P., Boehringer, A., Celnik, P., Edwards, M.J., Ferrucci, R., et al. (2013) Non-Invasive Cerebellar Stimulation—A Consensus Paper. The Cerebellum, 13, 121-138.
https://doi.org/10.1007/s12311-013-0514-7
[23]  Holdefer, R.N., Miller, L.E., Chen, L.L. and Houk, J.C. (2000) Functional Connectivity between Cerebellum and Primary Motor Cortex in the Awake Monkey. Journal of Neurophysiology, 84, 585-590.
https://doi.org/10.1152/jn.2000.84.1.585
[24]  Taib, N.O.B., Manto, M., Laute, M. and Brotchi, J. (2005) The Cerebellum Modulates Rodent Cortical Motor Output after Repetitive Somatosensory Stimulation. Neurosurgery, 56, 811-820.
https://doi.org/10.1227/01.neu.0000156616.94446.00
[25]  Farias da Guarda, S.N. and Conforto, A.B. (2014) Effects of Somatosensory Stimulation on Corticomotor Excitability in Patients with Unilateral Cerebellar Infarcts and Healthy Subjects—Preliminary Results. Cerebellum & Ataxias, 1, Article No. 16.
https://doi.org/10.1186/s40673-014-0016-5
[26]  Tanaka, M., Kameda, M. and Okada, K. (2024) Temporal Information Processing in the Cerebellum and Basal Ganglia. In: Merchant, H. and de Lafuente, V., Eds., Neurobiology of Interval Timing, Springer International Publishing, 95-116.
https://doi.org/10.1007/978-3-031-60183-5_6
[27]  Gopalakrishnan, R., Cunningham, D.A., Hogue, O., Schroedel, M., Campbell, B.A., Baker, K.B., et al. (2024) Electrophysiological Correlates of Dentate Nucleus Deep Brain Stimulation for Poststroke Motor Recovery. The Journal of Neuroscience, 44, e2149232024.
https://doi.org/10.1523/jneurosci.2149-23.2024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133