Zinc oxide (ZnO) nanoparticles are easily prepared from zinc solid using an electrochemical technique. A quick anodic oxidation under constant voltage of a zinc foil in an aqueous potassium chloride electrolyte leads to the fabrication of ZnO nanoparticles in a single-step process at room temperature and without the use of controversial chemical reagents. The crystallographic structure of the fabricated nanoparticles is characterized using X-ray diffraction (XRD) spectroscopy. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) are used to reveal the morphology and aggregate size of the nanopowder. The energy dispersive spectra obtained from the SEM-EDS confirm that the sample prepared is in the ZnO phase. The photocatalytic property of the synthesized ZnO nanoparticles is evaluated in studying the degradation of the Acid orange 7 (AO7) organic dye in the presence of the ZnO nanoparticles as a catalyst under UV-visible irradiation.
References
[1]
Kreuter, J. and Speiser, P.P. (1976) In Vitro Studies of Poly(Methyl Methacrylate) Adjuvants. Journal of Pharmaceutical Sciences, 65, 1624-1627. https://doi.org/10.1002/jps.2600651115
[2]
Gottardo, S., Mech, A., Drbohlavová, J., Małyska, A., Bøwadt, S., Riego Sintes, J., et al. (2021) Towards Safe and Sustainable Innovation in Nanotechnology: State-Of-Play for Smart Nanomaterials. NanoImpact, 21, Article ID: 100297. https://doi.org/10.1016/j.impact.2021.100297
[3]
Bhushan, B. (2017) Springer Handbook of Nanotechnology. Springer. https://doi.org/10.1007/978-3-662-54357-3
[4]
Rotello, V. (2004) Nanoparticles: Building Blocks for Nanotechnology. Springer. https://doi.org/10.1007/978-1-4419-9042-6
[5]
Petros, R.A. and DeSimone, J.M. (2010) Strategies in the Design of Nanoparticles for Therapeutic Applications. Nature Reviews Drug Discovery, 9, 615-627. https://doi.org/10.1038/nrd2591
[6]
Salata, O. (2004) Applications of Nanoparticles in Biology and Medicine. Journal of Nanobiotechnology, 2, Article No. 3. https://doi.org/10.1186/1477-3155-2-3
[7]
Stark, W.J., Stoessel, P.R., Wohlleben, W. and Hafner, A. (2015) Industrial Applications of Nanoparticles. Chemical Society Reviews, 44, 5793-5805. https://doi.org/10.1039/c4cs00362d
[8]
Santos, C.S.C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., et al. (2015) Industrial Applications of Nanoparticles—A Prospective Overview. Materials Today: Proceedings, 2, 456-465. https://doi.org/10.1016/j.matpr.2015.04.056
[9]
Schmid, K. and Riediker, M. (2008) Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environmental Science & Technology, 42, 2253-2260. https://doi.org/10.1021/es071818o
[10]
Panpatte, D.G., Jhala, Y.K., Shelat, H.N. and Vyas, R.V. (2016) Nanoparticles: The Next Generation Technology for Sustainable Agriculture. In: Singh, D., Singh, H. and Prabha, R., Eds., Microbial Inoculants in Sustainable Agricultural Productivity, Springer, 289-300. https://doi.org/10.1007/978-81-322-2644-4_18
[11]
Singh, R.P., Handa, R. and Manchanda, G. (2021) Nanoparticles in Sustainable Agriculture: An Emerging Opportunity. Journal of Controlled Release, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051
[12]
Tang, S.C.N. and Lo, I.M.C. (2013) Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications. Water Research, 47, 2613-2632. https://doi.org/10.1016/j.watres.2013.02.039
[13]
Thomas, J., Myara, M., Troussellier, L., Burov, E., Pastouret, A., Boivin, D., et al. (2012) Radiation-Resistant Erbium-Doped-Nanoparticles Optical Fiber for Space Applications. Optics Express, 20, 2435-2444. https://doi.org/10.1364/oe.20.002435
[14]
Marciano, F.R., Bonetti, L.F., Pessoa, R.S., Marcuzzo, J.S., Massi, M., Santos, L.V., et al. (2008) The Improvement of DLC Film Lifetime Using Silver Nanoparticles for Use on Space Devices. Diamond and Related Materials, 17, 1674-1679. https://doi.org/10.1016/j.diamond.2008.03.007
[15]
Fu, X., Cai, J., Zhang, X., Li, W., Ge, H. and Hu, Y. (2018) Top-Down Fabrication of Shape-Controlled, Monodisperse Nanoparticles for Biomedical Applications. Advanced Drug Delivery Reviews, 132, 169-187. https://doi.org/10.1016/j.addr.2018.07.006
[16]
Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., et al. (2022) Synthesis of Nanomaterials Using Various Top-Down and Bottom-Up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Advances in Colloid and Interface Science, 300, Article ID: 102597. https://doi.org/10.1016/j.cis.2021.102597
[17]
Djurišić, A.B., Ng, A.M.C. and Chen, X.Y. (2010) ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics, 34, 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001
[18]
Belhaj, M., Dridi, C., Elhouichet, H. and Valmalette, J.C. (2016) Study of ZnO Nanoparticles Based Hybrid Nanocomposites for Optoelectronic Applications. Journal of Applied Physics, 119, Article ID: 095501. https://doi.org/10.1063/1.4942525
[19]
Muchuweni, E., Sathiaraj, T.S. and Nyakotyo, H. (2017) Synthesis and Characterization of Zinc Oxide Thin Films for Optoelectronic Applications. Heliyon, 3, e00285. https://doi.org/10.1016/j.heliyon.2017.e00285
[20]
Wong, K.K., Ng, A., Chen, X.Y., Ng, Y.H., Leung, Y.H., Ho, K.H., et al. (2012) Effect of ZnO Nanoparticle Properties on Dye-Sensitized Solar Cell Performance. ACS Applied Materials & Interfaces, 4, 1254-1261. https://doi.org/10.1021/am201424d
[21]
Shashanka, R., Esgin, H., Yilmaz, V.M. and Caglar, Y. (2020) Fabrication and Characterization of Green Synthesized ZnO Nanoparticle Based Dye-Sensitized Solar Cells. Journal of Science: Advanced Materials and Devices, 5, 185-191. https://doi.org/10.1016/j.jsamd.2020.04.005
[22]
Elkhidir Suliman, A., Tang, Y. and Xu, L. (2007) Preparation of ZnO Nanoparticles and Nanosheets and Their Application to Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 91, 1658-1662. https://doi.org/10.1016/j.solmat.2007.05.014
[23]
Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A. and Guermazi, S. (2015) Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices and Microstructures, 85, 7-23. https://doi.org/10.1016/j.spmi.2015.05.007
[24]
Raoufi, D. (2013) Synthesis and Microstructural Properties of ZnO Nanoparticles Prepared by Precipitation Method. Renewable Energy, 50, 932-937. https://doi.org/10.1016/j.renene.2012.08.076
[25]
An, L.J., Wang, J., Zhang, T.F., Yang, H.L. and Sun, Z.H. (2011) Synthesis of ZnO Nanoparticles by Direct Precipitation Method. Advanced Materials Research, 380, 335-338. https://doi.org/10.4028/www.scientific.net/amr.380.335
[26]
Manikandan, B., Endo, T., Kaneko, S., Murali, K.R. and John, R. (2018) Properties of Sol Gel Synthesized ZnO Nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 9474-9485. https://doi.org/10.1007/s10854-018-8981-8
[27]
Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S. and Ali, E.S. (2016) Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211-216. https://doi.org/10.1016/j.proche.2016.03.095
[28]
Chung, Y.T., Ba-Abbad, M.M., Mohammad, A.W., Hairom, N.H.H. and Benamor, A. (2015) Synthesis of Minimal-Size ZnO Nanoparticles through Sol-Gel Method: Taguchi Design Optimisation. Materials & Design, 87, 780-787. https://doi.org/10.1016/j.matdes.2015.07.040
[29]
Aneesh, P.M., Vanaja, K.A. and Jayaraj, M.K. (2007) Synthesis of ZnO Nanoparticles by Hydrothermal Method. SPIE Proceedings, 6639. https://doi.org/10.1117/12.730364
[30]
Bharti, D.B. and Bharati, A.V. (2016) Synthesis of ZnO Nanoparticles Using a Hydrothermal Method and a Study Its Optical Activity. Luminescence, 32, 317-320. https://doi.org/10.1002/bio.3180
[31]
Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K. and Moorthy Babu, S. (2017) Hydrothermally Grown ZnO Nanoparticles for Effective Photocatalytic Activity. Applied Surface Science, 418, 138-146. https://doi.org/10.1016/j.apsusc.2016.12.231
[32]
Lee, G.J., Choi, E.H., Nam, S., Lee, J.S., Boo, J., Oh, S.D., et al. (2019) Optical Sensing Properties of ZnO Nanoparticles Prepared by Spray Pyrolysis. Journal of Nanoscience and Nanotechnology, 19, 1048-1051. https://doi.org/10.1166/jnn.2019.15918
[33]
Lee, S.D., Nam, S., Kim, M. and Boo, J. (2012) Synthesis and Photocatalytic Property of ZnO Nanoparticles Prepared by Spray-Pyrolysis Method. Physics Procedia, 32, 320-326. https://doi.org/10.1016/j.phpro.2012.03.563
[34]
Wallace, R., Brown, A.P., Brydson, R., Wegner, K. and Milne, S.J. (2013) Synthesis of ZnO Nanoparticles by Flame Spray Pyrolysis and Characterisation Protocol. Journal of Materials Science, 48, 6393-6403. https://doi.org/10.1007/s10853-013-7439-x
[35]
Umar, A., Kumar, R., Kumar, G., Algarni, H. and Kim, S.H. (2015) Effect of Annealing Temperature on the Properties and Photocatalytic Efficiencies of ZnO Nanoparticles. Journal of Alloys and Compounds, 648, 46-52. https://doi.org/10.1016/j.jallcom.2015.04.236
[36]
El-Desoky, M.M., Ali, M.A., Afifi, G., Imam, H. and Al-Assiri, M.S. (2016) Effects of Annealing Temperatures on the Structural and Dielectric Properties of ZnO Nanoparticles. Silicon, 10, 301-307. https://doi.org/10.1007/s12633-016-9445-5
[37]
Omri, K., Najeh, I. and El Mir, L. (2016) Influence of Annealing Temperature on the Microstructure and Dielectric Properties of ZnO Nanoparticles. Ceramics International, 42, 8940-8948. https://doi.org/10.1016/j.ceramint.2016.02.151
[38]
Minagar, S., Berndt, C.C., Wang, J., Ivanova, E. and Wen, C. (2012) A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces. Acta Biomaterialia, 8, 2875-2888. https://doi.org/10.1016/j.actbio.2012.04.005
[39]
Fukuda, H. and Matsumoto, Y. (2004) Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3 M KOH Solution. Corrosion Science, 46, 2135-2142. https://doi.org/10.1016/j.corsci.2004.02.001
[40]
Kulkarni, M., Mazare, A., Schmuki, P. and Iglic, A. (2016) Influence of Anodization Parameters on Morphology of TiO2 Nanostructured Surfaces. Advanced Materials Letters, 7, 23-28. https://doi.org/10.5185/amlett.2016.6156
[41]
Sulka, G.D. (2020) Introduction to Anodization of Metals. In: Sulka, G.D., Ed., Nanostructured Anodic Metal Oxides, Elsevier, 1-34. https://doi.org/10.1016/b978-0-12-816706-9.00001-7
[42]
Robinson Aguirre, O. and Félix Echeverría, E. (2018) Effects of Fluoride Source on the Characteristics of Titanium Dioxide Nanotubes. Applied Surface Science, 445, 308-319. https://doi.org/10.1016/j.apsusc.2018.03.139
[43]
İzmir, M. and Ercan, B. (2018) Anodization of Titanium Alloys for Orthopedic Applications. Frontiers of Chemical Science and Engineering, 13, 28-45. https://doi.org/10.1007/s11705-018-1759-y
[44]
Kim, S.J., Lee, J. and Choi, J. (2008) Understanding of Anodization of Zinc in an Electrolyte Containing Fluoride Ions. Electrochimica Acta, 53, 7941-7945. https://doi.org/10.1016/j.electacta.2008.06.006
[45]
Kuan, C.Y., Chou, J.M., Leu, I.C. and Hon, M.H. (2007) Formation and Field Emission Property of Single-Crystalline Zn Microtip Arrays by Anodization. Electrochemistry Communications, 9, 2093-2097. https://doi.org/10.1016/j.elecom.2007.06.004
[46]
Shetty, A. and Nanda, K.K. (2012) Synthesis of Zinc Oxide Porous Structures by Anodization with Water as an Electrolyte. Applied Physics A, 109, 151-157. https://doi.org/10.1007/s00339-012-7023-2
[47]
Elam, J.W. and George, S.M. (2003) Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques. Chemistry of Materials, 15, 1020-1028.
[48]
Hynes, A.P., Doremus, R.H. and Siegel, R.W. (2002) Sintering and Characterization of Nanophase Zinc Oxide. Journal of the American Ceramic Society, 85, 1979-1987. https://doi.org/10.1111/j.1151-2916.2002.tb00391.x
[49]
Mahian, O., Kianifar, A. and Wongwises, S. (2013) Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol-Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis. Journal of Cluster Science, 24, 1103-1114. https://doi.org/10.1007/s10876-013-0601-4
[50]
Xu, F., Zhang, P., Navrotsky, A., Yuan, Z., Ren, T., Halasa, M., et al. (2007) Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials, 19, 5680-5686. https://doi.org/10.1021/cm071190g
[51]
Radovanovic, P.V., Norberg, N.S., McNally, K.E. and Gamelin, D.R. (2002) Colloidal Transition-Metal-Doped ZnO Quantum Dots. Journal of the American Chemical Society, 124, 15192-15193. https://doi.org/10.1021/ja028416v
[52]
Wu, Y.L., Lim, C.S., Fu, S., Tok, A.I.Y., Lau, H.M., Boey, F.Y.C., et al. (2007) Surface Modifications of ZnO Quantum Dots for Bio-Imaging. Nanotechnology, 18, Article ID: 215604. https://doi.org/10.1088/0957-4484/18/21/215604
[53]
Flores, N.M., Pal, U., Galeazzi, R. and Sandoval, A. (2014) Effects of Morphology, Surface Area, and Defect Content on the Photocatalytic Dye Degradation Performance of ZnO Nanostructures. RSC Advances, 4, 41099-41110. https://doi.org/10.1039/c4ra04522j
[54]
Yamamoto, O., Hotta, M., Sawai, J., Sasamoto, T. and Kojima, H. (1998) Influence of Powder Characteristic of ZnO on Antibacterial Activity. Journal of the Ceramic Society of Japan, 106, 1007-1011. https://doi.org/10.2109/jcersj.106.1007
[55]
Mateos-Pedrero, C., Silva, H., Pacheco Tanaka, D.A., Liguori, S., Iulianelli, A., Basile, A., et al. (2015) CuO/ZnO Catalysts for Methanol Steam Reforming: The Role of the Support Polarity Ratio and Surface Area. Applied Catalysis B: Environment and Energy, 174, 67-76. https://doi.org/10.1016/j.apcatb.2015.02.039
[56]
Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., et al. (2016) The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 6, Article 188. https://doi.org/10.3390/catal6120188
[57]
Uma, K., Ananthakumar, S., Mangalaraja, R.V., Mahesh, K.P.O., Soga, T. and Jimbo, T. (2008) A Facile Approach to Hexagonal ZnO Nanorod Assembly. Journal of Sol-Gel Science and Technology, 49, 1-5. https://doi.org/10.1007/s10971-008-1846-5
[58]
Bin, Z., Liu, Z., Qiu, Y. and Duan, L. (2018) Efficient N-Dopants and Their Roles in Organic Electronics. Advanced Optical Materials, 6, Article ID: 1800536. https://doi.org/10.1002/adom.201800536
[59]
Velumani, S. and Ascencio, J.A. (2004) Formation of ZnS Nanorods by Simple Evaporation Technique. Applied Physics A, 79, 153-156. https://doi.org/10.1007/s00339-003-2367-2
[60]
Singh, S., Gade, J.V., Verma, D.K., Elyor, B. and Jain, B. (2024) Exploring ZnO Nanoparticles: UV-Visible Analysis and Different Size Estimation Methods. Optical Materials, 152, 115422. https://doi.org/10.1016/j.optmat.2024.115422
[61]
Muhammad, W., Ullah, N., Haroon, M. and Abbasi, B.H. (2019) Optical, Morphological and Biological Analysis of Zinc Oxide Nanoparticles (ZnO NpS) Using Papaver somniferum L. RSC Advances, 9, 29541-29548. https://doi.org/10.1039/c9ra04424h
[62]
Haryński, Ł., Olejnik, A., Grochowska, K. and Siuzdak, K. (2022) A Facile Method for Tauc Exponent and Corresponding Electronic Transitions Determination in Semiconductors Directly from UV-Vis Spectroscopy Data. Optical Materials, 127, Article ID: 112205. https://doi.org/10.1016/j.optmat.2022.112205
[63]
Jubu, P.R., Yam, F.K., Igba, V.M. and Beh, K.P. (2020) Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV-vis-NIR Data—A Case Study of β-Ga2O3. Journal of Solid State Chemistry, 290, Article ID: 121576. https://doi.org/10.1016/j.jssc.2020.121576
[64]
Shan, F.K. and Yu, Y.S. (2004) Band Gap Energy of Pure and Al-Doped ZnO Thin Films. Journal of the European Ceramic Society, 24, 1869-1872. https://doi.org/10.1016/s0955-2219(03)00490-4
[65]
Zeuner, A., Alves, H., Hofmann, D.M., Meyer, B.K., Heuken, M., Bläsing, J., et al. (2002) Structural and Optical Properties of Epitaxial and Bulk ZnO. Applied Physics Letters, 80, 2078-2080. https://doi.org/10.1063/1.1464218
[66]
Baran, W., Adamek, E. and Makowski, A. (2008) The Influence of Selected Parameters on the Photocatalytic Degradation of Azo-Dyes in the Presence of TiO2 Aqueous Suspension. Chemical Engineering Journal, 145, 242-248. https://doi.org/10.1016/j.cej.2008.04.021
[67]
Ong, C.B., Ng, L.Y. and Mohammad, A.W. (2018) A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews, 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020
[68]
Sang, Y., Li, J., Zhou, J., Li, Y., Zhang, J., Xia, X., et al. (2024) The Activation of Peroxymonosulfate via Oxygen/Cobalt-Modified Carbon Nitride for Decomposition of Acid Orange 7: Role of High-Value Cobalt and Superoxide Radical. Research on Chemical Intermediates, 50, 4155-4174. https://doi.org/10.1007/s11164-024-05364-9
[69]
Janotti, A. and Van de Walle, C.G. (2005) Oxygen Vacancies in ZnO. Applied Physics Letters, 87, Article ID: 122102. https://doi.org/10.1063/1.2053360
[70]
Leiter, F., Alves, H., Pfisterer, D., Romanov, N.G., Hofmann, D.M. and Meyer, B.K. (2003) Oxygen Vacancies in ZnO. Physica B: Condensed Matter, 340, 201-204. https://doi.org/10.1016/j.physb.2003.09.031
[71]
Hofmann, D.M., Pfisterer, D., Sann, J., Meyer, B.K., Tena-Zaera, R., Munoz-Sanjose, V., et al. (2007) Properties of the Oxygen Vacancy in ZnO. Applied Physics A, 88, 147-151. https://doi.org/10.1007/s00339-007-3956-2