The flexibility of magnetoelectric coupling in RMnO3 is enhanced by the sensitivity of such materials to diverse interactions. This complicates the straightforward comprehension of its various physicochemical properties, such as magnetoelectric properties. The present study measures the impact of the simultaneous action of Dzyaloshinsky-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on the thermodynamic ability to induce phase transition in a rare-earth (R) Mn perovskite of TbMnO3 (TMO) helical compound at thermal equilibrium using entropy, heat capacity, and magnetoelectric (ME) coupling factor. We found that the behaviour of entropy is similar to that of the ME coupling factor, which emphasizes the metamagnetoelectric properties for ferric transition points of this order. The intrinsic physics of transition points, which is accurately described in terms of entropy, reveals a muddle caused by a rearrangement of magnetic moments. The magnetic rearrangement at the corresponding critical points of entropy shows a different loop than the heat capacity. Under the influence of the DM interaction, the KSEA interaction accelerates the decrease of specific heat and entropy as the ME coupling increases. However, the KSEA interaction reduces transition dynamics and opposes symmetrical inversion caused by DM interaction. The observed thermodynamic capacity changes caused by the simultaneous action of DM and KSEA interactions are the signature of a system attempting to minimize the possible distortions that are primarily responsible for the loss of quantum property.
References
[1]
Uhlenbeck, G.E. (1976) Fifty Years of Spin: Personal Reminiscences. PhysicsToday, 29, 43-48. https://doi.org/10.1063/1.3023519
[2]
Ohanian, H.C. (1986) What Is Spin? AmericanJournalofPhysics, 54, 500-505. https://doi.org/10.1119/1.14580
[3]
Fouokeng, G.C., Fodouop, F.K., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2018) “Metamagnetoelectric” Effect in Multiferroics. Journal of Magnetism andMagneticMaterials, 453, 118-124. https://doi.org/10.1016/j.jmmm.2017.12.104
[4]
Xu, Y. (2013) Ferroelectric Materials and Their Applications. Elsevier.
[5]
Fodouop, F.K., Fouokeng, G.C., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2019) Thermodynamics of Metamagnetoelectric Effect in Multiferroics. JournalofMagnetismandMagneticMaterials, 474, 456-461. https://doi.org/10.1016/j.jmmm.2018.10.080
Smolenskiĭ, G.A. and Chupis, I.E. (1982) Ferroelectromagnets. Soviet Physics Uspekhi, 25, 475-493. https://doi.org/10.1070/pu1982v025n07abeh004570
[8]
Schmid, H. (1994) Multi-Ferroic Magnetoelectrics. Ferroelectrics, 162, 317-338. https://doi.org/10.1080/00150199408245120
[9]
Harris, A.B., Kenzelmann, M., Aharony, A. and Entin-Wohlman, O. (2008) Effect of Inversion Symmetry on the Incommensurate Order in Multiferroic R Mn2O5(R = Rare Earth). PhysicalReviewB, 78, Article ID: 014407. https://doi.org/10.1103/physrevb.78.014407
[10]
Zhu, J.L., Yang, H.X., Feng, S.M., Wang, L.J., Liu, Q.Q., Jin, C.Q., et al. (2013) The Multiferroic Properties of Bi(Fe1/2Cr1/2)O3 Compound. InternationalJournalofModernPhysicsB, 27, Article ID: 1362023. https://doi.org/10.1142/s0217979213620233
[11]
Li, B., Zhou, J., Li, L., Wang, X.J., Liu, X.H. and Zi, J. (2003) Ferroelectric Inverse Opals with Electrically Tunable Photonic Band Gap. AppliedPhysicsLetters, 83, 4704-4706. https://doi.org/10.1063/1.1631737
[12]
Shimakawa, Y., Azuma, M. and Ichikawa, N. (2011) Multiferroic Compounds with Double-Perovskite Structures. Materials, 4, 153-168. https://doi.org/10.3390/ma4010153
[13]
Harris, A.B., Aharony, A. and Entin-Wohlman, O. (2008) Order Parameters and Phase Diagram of Multiferroic R Mn2O5. PhysicalReviewLetters, 100, Article ID: 217202. https://doi.org/10.1103/physrevlett.100.217202
[14]
Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M. and Tokura, Y. (2003) Magnetocapacitance Effect in Multiferroic BiMnO3. PhysicalReviewB, 67, Article ID: 180401. https://doi.org/10.1103/physrevb.67.180401
[15]
Cheng, Z., Wang, X., Dou, S., Kimura, H. and Ozawa, K. (2008) Improved Ferroelectric Properties in Multiferroic BiFeO3 Thin Films through La and Nb Codoping. PhysicalReviewB, 77, Article ID: 092101. https://doi.org/10.1103/physrevb.77.092101
[16]
Park, S., Choi, Y.J., Zhang, C.L. and Cheong, S. (2007) Ferroelectricity in an S = 1/2 Chain Cuprate. PhysicalReviewLetters, 98, Article ID: 057601. https://doi.org/10.1103/physrevlett.98.057601
[17]
Seki, S., Yamasaki, Y., Soda, M., Matsuura, M., Hirota, K. and Tokura, Y. (2008) Correlation between Spin Helicity and an Electric Polarization Vector in Quantum-Spin Chain Magnet LiCu2O2. PhysicalReviewLetters, 100, Article ID: 127201. https://doi.org/10.1103/physrevlett.100.127201
[18]
Katsura, H., Nagaosa, N. and Balatsky, A.V. (2005) Spin Current and Magnetoelectric Effect in Noncollinear Magnets. PhysicalReviewLetters, 95, Article ID: 057205. https://doi.org/10.1103/physrevlett.95.057205
[19]
Smolenskii, G.A. and Bokov, V.A. (1964) Coexistence of Magnetic and Electric Ordering in Crystals. JournalofAppliedPhysics, 35, 915-918. https://doi.org/10.1063/1.1713535
[20]
Sahu, J.R., Serrao, C.R., Ray, N., Waghmare, U.V. and Rao, C.N.R. (2007) Rare Earth Chromites: A New Family of Multiferroics. Journal of Materials Chemistry, 17, 42-44. https://doi.org/10.1039/b612093h
[21]
Khomskii, D. (2009) Classifying Multiferroics: Mechanisms and Effects. Physics, 2, Article 20. https://doi.org/10.1103/physics.2.20
[22]
Tagantsev, A.K., Cross, L.E. and Fousek, J. (2010) Domains in Ferroic Crystals and Thin Films. Springer. https://doi.org/10.1007/978-1-4419-1417-0
[23]
Fouokeng, G.C., Fodouop, F.K., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2018) “Metamagnetoelectric” Effect in Multiferroics. Journal of Magnetism and MagneticMaterials, 453, 118-124. https://doi.org/10.1016/j.jmmm.2017.12.104
[24]
Mochizuki, M. and Furukawa, N. (2009) Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites. PhysicalReviewB, 80, Article ID: 134416. https://doi.org/10.1103/physrevb.80.134416
[25]
Matsuda, M., Fishman, R.S., Hong, T., Lee, C.H., Ushiyama, T., Yanagisawa, Y., et al. (2012) Magnetic Dispersion and Anisotropy in Multiferroic BiFeO3. PhysicalReviewLetters, 109, Article ID: 067205. https://doi.org/10.1103/physrevlett.109.067205
[26]
Kenzelmann, M., Harris, A.B., Jonas, S., Broholm, C., Schefer, J., Kim, S.B., et al. (2005) Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. PhysicalReviewLetters, 95, Article ID: 087206. https://doi.org/10.1103/physrevlett.95.087206
[27]
Blasco, J., Ritter, C., García, J., de Teresa, J.M., Pérez-Cacho, J. and Ibarra, M.R. (2000) Structural and Magnetic Study of Tb1−xCaxMnO3 Perovskites. PhysicalReviewB, 62, 5609-5618. https://doi.org/10.1103/physrevb.62.5609
[28]
Yasui, Y., Yanagisawa, Y., Okazaki, R. and Terasaki, I. (2013) Dielectric Anomaly in the Quasi-One-Dimensional Frustrated Spin-1/2 System Rb2(Cu1−xMx)2Mo3O12 (M = Ni and Zn). PhysicalReviewB, 87, Article ID: 054411. https://doi.org/10.1103/physrevb.87.054411
[29]
Reynolds, N., Mannig, A., Luetkens, H., Baines, C., Goko, T., Scheuermann, R., et al. (2019) Magnetoelectric Coupling without Long-Range Magnetic Order in the Spin-1/2 Multiferroic Rb2Cu2Mo3O12. PhysicalReviewB, 99, Article ID: 214443. https://doi.org/10.1103/physrevb.99.214443
[30]
Jia, C., Onoda, S., Nagaosa, N. and Han, J.H. (2007) Microscopic Theory of Spin-Polarization Coupling in Multiferroic Transition Metal Oxides. PhysicalReviewB, 76, Article ID: 144424. https://doi.org/10.1103/physrevb.76.144424
[31]
Arima, T., Tokunaga, A., Goto, T., Kimura, H., Noda, Y. and Tokura, Y. (2006) Collinear to Spiral Spin Transformation without Changing the Modulation Wavelength Upon Ferroelectric Transition in Tb1−xDyxMnO3. PhysicalReviewLetters, 96, Article ID: 097202. https://doi.org/10.1103/physrevlett.96.097202
[32]
Jia, C. and Berakdar, J. (2011) Electric Field Effects on the Thermodynamics of Multiferroic Chains. JournalofSuperconductivityandNovelMagnetism, 25, 2679-2681. https://doi.org/10.1007/s10948-011-1241-2
[33]
Cheong, S. and Mostovoy, M. (2007) Multiferroics: A Magnetic Twist for Ferroelectricity. NatureMaterials, 6, 13-20. https://doi.org/10.1038/nmat1804
[34]
Fodouop, F.K., Fouokeng, G.C., Ateuafack, M.E., Tchoffo, M. and Fai, L.C. (2020) Metamagnetoelectric Effect in Multiferroics A2Cu2Mo3O12 (A = Rb and Cs) Quantum Spin Chain. PhysicaB: CondensedMatter, 598, Article ID: 412455. https://doi.org/10.1016/j.physb.2020.412455
[35]
Alonso, J.A., Martínez-Lope, M.J., Casais, M.T. and Fernández-Díaz, M.T. (2000) Evolution of the Jahn-Teller Distortion of MnO6 Octahedra in RmNo3 Perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study. InorganicChemistry, 39, 917-923. https://doi.org/10.1021/ic990921e
[36]
Tchoffo, M., Fodouop, F.K., Fouokeng, G.C., Randrianantoandro, N. and Fai, L.C. (2019) Temperature-Dependent Interplay of Anisotropic Exchange Coupling and External Fields on Metamagnetoelectric Multiferroics. MaterialsResearchExpress, 6, Article ID: 096102. https://doi.org/10.1088/2053-1591/ab2a64
[37]
Vopson, M.M. (2015) Fundamentals of Multiferroic Materials and Their Possible Applications. CriticalReviewsinSolidStateandMaterialsSciences, 40, 223-250. https://doi.org/10.1080/10408436.2014.992584
[38]
Rahman, A.U., Yang, M., Zangi, S.M. and Qiao, C. (2023) Probing a Hybrid Channel for the Dynamics of Non-Local Features. Symmetry, 15, Article 2189. https://doi.org/10.3390/sym15122189