全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Remarkable Thermodynamic Properties of the Helical Multiferroic Quantum Spin Chain

DOI: 10.4236/wjcmp.2025.151001, PP. 1-15

Keywords: KSEA Interaction, Thermodynamics, Helical Multiferroics Spin Chain, DM Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

The flexibility of magnetoelectric coupling in RMnO3 is enhanced by the sensitivity of such materials to diverse interactions. This complicates the straightforward comprehension of its various physicochemical properties, such as magnetoelectric properties. The present study measures the impact of the simultaneous action of Dzyaloshinsky-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on the thermodynamic ability to induce phase transition in a rare-earth (R) Mn perovskite of TbMnO3 (TMO) helical compound at thermal equilibrium using entropy, heat capacity, and magnetoelectric (ME) coupling factor. We found that the behaviour of entropy is similar to that of the ME coupling factor, which emphasizes the metamagnetoelectric properties for ferric transition points of this order. The intrinsic physics of transition points, which is accurately described in terms of entropy, reveals a muddle caused by a rearrangement of magnetic moments. The magnetic rearrangement at the corresponding critical points of entropy shows a different loop than the heat capacity. Under the influence of the DM interaction, the KSEA interaction accelerates the decrease of specific heat and entropy as the ME coupling increases. However, the KSEA interaction reduces transition dynamics and opposes symmetrical inversion caused by DM interaction. The observed thermodynamic capacity changes caused by the simultaneous action of DM and KSEA interactions are the signature of a system attempting to minimize the possible distortions that are primarily responsible for the loss of quantum property.

References

[1]  Uhlenbeck, G.E. (1976) Fifty Years of Spin: Personal Reminiscences. Physics Today, 29, 43-48.
https://doi.org/10.1063/1.3023519
[2]  Ohanian, H.C. (1986) What Is Spin? American Journal of Physics, 54, 500-505.
https://doi.org/10.1119/1.14580
[3]  Fouokeng, G.C., Fodouop, F.K., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2018) “Metamagnetoelectric” Effect in Multiferroics. Journal of Magnetism and Magnetic Materials, 453, 118-124.
https://doi.org/10.1016/j.jmmm.2017.12.104
[4]  Xu, Y. (2013) Ferroelectric Materials and Their Applications. Elsevier.
[5]  Fodouop, F.K., Fouokeng, G.C., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2019) Thermodynamics of Metamagnetoelectric Effect in Multiferroics. Journal of Magnetism and Magnetic Materials, 474, 456-461.
https://doi.org/10.1016/j.jmmm.2018.10.080
[6]  Salje, E.K.H. (2012) Ferroelastic Materials. Annual Review of Materials Research, 42, 265-283.
https://doi.org/10.1146/annurev-matsci-070511-155022
[7]  Smolenskiĭ, G.A. and Chupis, I.E. (1982) Ferroelectromagnets. Soviet Physics Uspekhi, 25, 475-493.
https://doi.org/10.1070/pu1982v025n07abeh004570
[8]  Schmid, H. (1994) Multi-Ferroic Magnetoelectrics. Ferroelectrics, 162, 317-338.
https://doi.org/10.1080/00150199408245120
[9]  Harris, A.B., Kenzelmann, M., Aharony, A. and Entin-Wohlman, O. (2008) Effect of Inversion Symmetry on the Incommensurate Order in Multiferroic R Mn2O5(R = Rare Earth). Physical Review B, 78, Article ID: 014407.
https://doi.org/10.1103/physrevb.78.014407
[10]  Zhu, J.L., Yang, H.X., Feng, S.M., Wang, L.J., Liu, Q.Q., Jin, C.Q., et al. (2013) The Multiferroic Properties of Bi(Fe1/2Cr1/2)O3 Compound. International Journal of Modern Physics B, 27, Article ID: 1362023.
https://doi.org/10.1142/s0217979213620233
[11]  Li, B., Zhou, J., Li, L., Wang, X.J., Liu, X.H. and Zi, J. (2003) Ferroelectric Inverse Opals with Electrically Tunable Photonic Band Gap. Applied Physics Letters, 83, 4704-4706.
https://doi.org/10.1063/1.1631737
[12]  Shimakawa, Y., Azuma, M. and Ichikawa, N. (2011) Multiferroic Compounds with Double-Perovskite Structures. Materials, 4, 153-168.
https://doi.org/10.3390/ma4010153
[13]  Harris, A.B., Aharony, A. and Entin-Wohlman, O. (2008) Order Parameters and Phase Diagram of Multiferroic R Mn2O5. Physical Review Letters, 100, Article ID: 217202.
https://doi.org/10.1103/physrevlett.100.217202
[14]  Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M. and Tokura, Y. (2003) Magnetocapacitance Effect in Multiferroic BiMnO3. Physical Review B, 67, Article ID: 180401.
https://doi.org/10.1103/physrevb.67.180401
[15]  Cheng, Z., Wang, X., Dou, S., Kimura, H. and Ozawa, K. (2008) Improved Ferroelectric Properties in Multiferroic BiFeO3 Thin Films through La and Nb Codoping. Physical Review B, 77, Article ID: 092101.
https://doi.org/10.1103/physrevb.77.092101
[16]  Park, S., Choi, Y.J., Zhang, C.L. and Cheong, S. (2007) Ferroelectricity in an S = 1/2 Chain Cuprate. Physical Review Letters, 98, Article ID: 057601.
https://doi.org/10.1103/physrevlett.98.057601
[17]  Seki, S., Yamasaki, Y., Soda, M., Matsuura, M., Hirota, K. and Tokura, Y. (2008) Correlation between Spin Helicity and an Electric Polarization Vector in Quantum-Spin Chain Magnet LiCu2O2. Physical Review Letters, 100, Article ID: 127201.
https://doi.org/10.1103/physrevlett.100.127201
[18]  Katsura, H., Nagaosa, N. and Balatsky, A.V. (2005) Spin Current and Magnetoelectric Effect in Noncollinear Magnets. Physical Review Letters, 95, Article ID: 057205.
https://doi.org/10.1103/physrevlett.95.057205
[19]  Smolenskii, G.A. and Bokov, V.A. (1964) Coexistence of Magnetic and Electric Ordering in Crystals. Journal of Applied Physics, 35, 915-918.
https://doi.org/10.1063/1.1713535
[20]  Sahu, J.R., Serrao, C.R., Ray, N., Waghmare, U.V. and Rao, C.N.R. (2007) Rare Earth Chromites: A New Family of Multiferroics. Journal of Materials Chemistry, 17, 42-44.
https://doi.org/10.1039/b612093h
[21]  Khomskii, D. (2009) Classifying Multiferroics: Mechanisms and Effects. Physics, 2, Article 20.
https://doi.org/10.1103/physics.2.20
[22]  Tagantsev, A.K., Cross, L.E. and Fousek, J. (2010) Domains in Ferroic Crystals and Thin Films. Springer.
https://doi.org/10.1007/978-1-4419-1417-0
[23]  Fouokeng, G.C., Fodouop, F.K., Tchoffo, M., Fai, L.C. and Randrianantoandro, N. (2018) “Metamagnetoelectric” Effect in Multiferroics. Journal of Magnetism and Magnetic Materials, 453, 118-124.
https://doi.org/10.1016/j.jmmm.2017.12.104
[24]  Mochizuki, M. and Furukawa, N. (2009) Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites. Physical Review B, 80, Article ID: 134416.
https://doi.org/10.1103/physrevb.80.134416
[25]  Matsuda, M., Fishman, R.S., Hong, T., Lee, C.H., Ushiyama, T., Yanagisawa, Y., et al. (2012) Magnetic Dispersion and Anisotropy in Multiferroic BiFeO3. Physical Review Letters, 109, Article ID: 067205.
https://doi.org/10.1103/physrevlett.109.067205
[26]  Kenzelmann, M., Harris, A.B., Jonas, S., Broholm, C., Schefer, J., Kim, S.B., et al. (2005) Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. Physical Review Letters, 95, Article ID: 087206.
https://doi.org/10.1103/physrevlett.95.087206
[27]  Blasco, J., Ritter, C., García, J., de Teresa, J.M., Pérez-Cacho, J. and Ibarra, M.R. (2000) Structural and Magnetic Study of Tb1−xCaxMnO3 Perovskites. Physical Review B, 62, 5609-5618.
https://doi.org/10.1103/physrevb.62.5609
[28]  Yasui, Y., Yanagisawa, Y., Okazaki, R. and Terasaki, I. (2013) Dielectric Anomaly in the Quasi-One-Dimensional Frustrated Spin-1/2 System Rb2(Cu1−xMx)2Mo3O12 (M = Ni and Zn). Physical Review B, 87, Article ID: 054411.
https://doi.org/10.1103/physrevb.87.054411
[29]  Reynolds, N., Mannig, A., Luetkens, H., Baines, C., Goko, T., Scheuermann, R., et al. (2019) Magnetoelectric Coupling without Long-Range Magnetic Order in the Spin-1/2 Multiferroic Rb2Cu2Mo3O12. Physical Review B, 99, Article ID: 214443.
https://doi.org/10.1103/physrevb.99.214443
[30]  Jia, C., Onoda, S., Nagaosa, N. and Han, J.H. (2007) Microscopic Theory of Spin-Polarization Coupling in Multiferroic Transition Metal Oxides. Physical Review B, 76, Article ID: 144424.
https://doi.org/10.1103/physrevb.76.144424
[31]  Arima, T., Tokunaga, A., Goto, T., Kimura, H., Noda, Y. and Tokura, Y. (2006) Collinear to Spiral Spin Transformation without Changing the Modulation Wavelength Upon Ferroelectric Transition in Tb1−xDyxMnO3. Physical Review Letters, 96, Article ID: 097202.
https://doi.org/10.1103/physrevlett.96.097202
[32]  Jia, C. and Berakdar, J. (2011) Electric Field Effects on the Thermodynamics of Multiferroic Chains. Journal of Superconductivity and Novel Magnetism, 25, 2679-2681.
https://doi.org/10.1007/s10948-011-1241-2
[33]  Cheong, S. and Mostovoy, M. (2007) Multiferroics: A Magnetic Twist for Ferroelectricity. Nature Materials, 6, 13-20.
https://doi.org/10.1038/nmat1804
[34]  Fodouop, F.K., Fouokeng, G.C., Ateuafack, M.E., Tchoffo, M. and Fai, L.C. (2020) Metamagnetoelectric Effect in Multiferroics A2Cu2Mo3O12 (A = Rb and Cs) Quantum Spin Chain. Physica B: Condensed Matter, 598, Article ID: 412455.
https://doi.org/10.1016/j.physb.2020.412455
[35]  Alonso, J.A., Martínez-Lope, M.J., Casais, M.T. and Fernández-Díaz, M.T. (2000) Evolution of the Jahn-Teller Distortion of MnO6 Octahedra in RmNo3 Perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study. Inorganic Chemistry, 39, 917-923.
https://doi.org/10.1021/ic990921e
[36]  Tchoffo, M., Fodouop, F.K., Fouokeng, G.C., Randrianantoandro, N. and Fai, L.C. (2019) Temperature-Dependent Interplay of Anisotropic Exchange Coupling and External Fields on Metamagnetoelectric Multiferroics. Materials Research Express, 6, Article ID: 096102.
https://doi.org/10.1088/2053-1591/ab2a64
[37]  Vopson, M.M. (2015) Fundamentals of Multiferroic Materials and Their Possible Applications. Critical Reviews in Solid State and Materials Sciences, 40, 223-250.
https://doi.org/10.1080/10408436.2014.992584
[38]  Rahman, A.U., Yang, M., Zangi, S.M. and Qiao, C. (2023) Probing a Hybrid Channel for the Dynamics of Non-Local Features. Symmetry, 15, Article 2189.
https://doi.org/10.3390/sym15122189

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133