|
聚集诱导发光型光敏剂合成及活性评价
|
Abstract:
目的:本文基于四苯乙烯母核结构合成了光敏剂分子OMe-DiS-DiPy,并对其光动力治疗活性进行了探究。方法:通过紫外–可见光光谱及荧光谱对光敏剂的基本光学性质及光动力活性进行了测定。通过DCFH-DA荧光探针,ABDA探针以及DHR123荧光探针分别对光敏剂在溶液中的总ROS,1O2及O2?˙生成进行测定。结果:所合成的光敏剂在400~500 nm具有较强的吸收,在550~750 nm具有较强的荧光发射,在溶液中能够产生ROS。结论:综上所述,本文所合成的光敏剂具有较好的ROS生成能力并通过I型途径及II型途径产生ROS。
Objective: In this study, we designed and synthesized a photosensitizer molecule (OMe-DiS-DiPy) based on a tetraphenylethylene (TPE) scaffold, and systematically evaluated its photodynamic therapy (PDT) efficacy. Methods: The optical properties and photodynamic activity were characterized using UV-Vis and fluorescence spectroscopy. The total ROS, 1O2 and O2?˙ production were measured by DCFH-DA, ABDA and DHR123 probes, respectively. Results: The synthesized photosensitizer exhibited strong absorption at 400~500 nm and intense fluorescence emission at 550~750 nm. ROS production was observed in solution. Conclution: In conclusion, the photosensitizers synthesized in this work have good ROS generation ability and produce ROS through the type I and type II pathways.
[1] | Dolmans, D.E.J.G.J., Fukumura, D. and Jain, R.K. (2003) Photodynamic Therapy for Cancer. Nature Reviews Cancer, 3, 380-387. https://doi.org/10.1038/nrc1071 |
[2] | Huisin’t Veld, R.V., Heuts, J., Ma, S., Cruz, L.J., Ossendorp, F.A. and Jager, M.J. (2023) Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics, 15, Article No. 330. https://doi.org/10.3390/pharmaceutics15020330 |
[3] | Sultana, N., Pathak, R., Samanta, S. and Sen Sarma, N. (2025) A Comprehensive Analysis of Photothermal Therapy (PTT) and Photodynamic Therapy (PDT) for the Treatment of Cancer. Process Biochemistry, 148, 17-31. https://doi.org/10.1016/j.procbio.2024.11.015 |
[4] | Singh, P.P., Sinha, S., Gahtori, P., Mishra, D.N., Pandey, G. and Srivastava, V. (2024) Recent Advancement in Photosensitizers for Photodynamic Therapy. Dyes and Pigments, 229, Article ID: 112262. https://doi.org/10.1016/j.dyepig.2024.112262 |
[5] | Yu, L., Liu, Z., Xu, W., Jin, K., Liu, J., Zhu, X., et al. (2024) Towards Overcoming Obstacles of Type II Photodynamic Therapy: Endogenous Production of Light, Photosensitizer, and Oxygen. Acta Pharmaceutica Sinica B, 14, 1111-1131. https://doi.org/10.1016/j.apsb.2023.11.007 |
[6] | Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., et al. (2011) Photodynamic Therapy of Cancer: An Update. CA: A Cancer Journal for Clinicians, 61, 250-281. https://doi.org/10.3322/caac.20114 |
[7] | Sobhani, N. and Samadani, A.A. (2021) Implications of Photodynamic Cancer Therapy: An Overview of PDT Mechanisms Basically and Practically. Journal of the Egyptian National Cancer Institute, 33, Article No. 34. https://doi.org/10.1186/s43046-021-00093-1 |
[8] | Viana Cabral, F., Quilez Alburquerque, J., Roberts, H.J. and Hasan, T. (2024) Shedding Light on Chemoresistance: The Perspective of Photodynamic Therapy in Cancer Management. International Journal of Molecular Sciences, 25, Article No. 3811. https://doi.org/10.3390/ijms25073811 |
[9] | Li, X., Lovell, J.F., Yoon, J. and Chen, X. (2020) Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nature Reviews Clinical Oncology, 17, 657-674. https://doi.org/10.1038/s41571-020-0410-2 |
[10] | Ni, J., Wang, Y., Zhang, H., Sun, J.Z. and Tang, B.Z. (2021) Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules, 26, Article No. 268. https://doi.org/10.3390/molecules26020268 |
[11] | Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, No. 18, 1740-1741. https://doi.org/10.1039/b105159h |
[12] | Ding, D., Li, K., Liu, B. and Tang, B.Z. (2013) Bioprobes Based on AIE Fluorogens. Accounts of Chemical Research, 46, 2441-2453. https://doi.org/10.1021/ar3003464 |
[13] | Yuan, C., Saito, S., Camacho, C., Kowalczyk, T., Irle, S. and Yamaguchi, S. (2014) Hybridization of a Flexible Cyclooctatetraene Core and Rigid Aceneimide Wings for Multiluminescent Flapping Π Systems. Chemistry—A European Journal, 20, 2193-2200. https://doi.org/10.1002/chem.201303955 |
[14] | Xu, W., Lee, M.M.S., Nie, J., Zhang, Z., Kwok, R.T.K., Lam, J.W.Y., et al. (2020) Three‐Pronged Attack by Homologous Far-Red/NIR AIEgens to Achieve 1 + 1 + 1 > 3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie International Edition, 59, 9610-9616. https://doi.org/10.1002/anie.202000740 |
[15] | Hu, F., Yuan, Y., Wu, W., Mao, D. and Liu, B. (2018) Dual-Responsive Metabolic Precursor and Light-Up AIEgen for Cancer Cell Bio-Orthogonal Labeling and Precise Ablation. Analytical Chemistry, 90, 6718-6724. https://doi.org/10.1021/acs.analchem.8b00547 |
[16] | Lucky, S.S., Soo, K.C. and Zhang, Y. (2015) Nanoparticles in Photodynamic Therapy. Chemical Reviews, 115, 1990-2042. https://doi.org/10.1021/cr5004198 |
[17] | Lovell, J.F., Jin, C.S., Huynh, E., Jin, H., Kim, C., Rubinstein, J.L., et al. (2011) Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nature Materials, 10, 324-332. https://doi.org/10.1038/nmat2986 |
[18] | Hu, F., Yuan, Y., Mao, D., Wu, W. and Liu, B. (2017) Smart Activatable and Traceable Dual-Prodrug for Image-Guided Combination Photodynamic and Chemotherapy. Biomaterials, 144, 53-59. https://doi.org/10.1016/j.biomaterials.2017.08.018 |
[19] | Liu, Y.Y., Zhang, X., Li, K., Peng, Q.C., Qin, Y.J., Hou, H.W., et al. (2021) Restriction of Intramolecular Vibration in Aggregation‐Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal-Organic Frameworks. Angewandte Chemie International Edition, 60, 22417-22423. https://doi.org/10.1002/anie.202108326 |
[20] | Murphy, M.P., Bayir, H., Belousov, V., Chang, C.J., Davies, K.J.A., Davies, M.J., et al. (2022) Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in Vivo. Nature Metabolism, 4, 651-662. https://doi.org/10.1038/s42255-022-00591-z |
[21] | Xu, J., Jin, X., Wu, X., Li, X., Li, C., Li, S., et al. (2024) Regulating Donor Configuration to Develop AIE-Active Type I Photosensitizers for Lipid Droplet Imaging and High-Performance Photodynamic Therapy under Hypoxia. Journal of Materials Chemistry B, 12, 6384-6393. https://doi.org/10.1039/d4tb00051j |
[22] | Tang, Y., Li, Y., Li, B., Song, W., Qi, G., Tian, J., et al. (2024) Oxygen-Independent Organic Photosensitizer with Ultralow-Power NIR Photoexcitation for Tumor-Specific Photodynamic Therapy. Nature Communications, 15, Article No. 2530. https://doi.org/10.1038/s41467-024-46768-w |
[23] | Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383. https://doi.org/10.1038/s41580-020-0230-3 |